Measuring the Diversity of Facebook Reactions to Research

Author:

Freeman Cole1,Alhoori Hamed1,Shahzad Murtuza1

Affiliation:

1. Northern Illinois University, Dekalb, IL, USA

Abstract

Online and in the real world, communities are bonded together by emotional consensus around core issues. Emotional responses to scientific findings often play a pivotal role in these core issues. When there is too much diversity of opinion on topics of science, emotions flare up and give rise to conflict. This conflict threatens positive outcomes for research. Emotions have the power to shape how people process new information. They can color the public's understanding of science, motivate policy positions, even change lives. And yet little work has been done to evaluate the public's emotional response to science using quantitative methods. In this paper, we use a dataset of responses to scholarly articles on Facebook to analyze the dynamics of emotional valence, intensity, and diversity. We present a novel way of weighting click-based reactions that increases their comprehensibility, and use these weighted reactions to develop new metrics of aggregate emotional responses. We use our metrics along with LDA topic models and statistical testing to investigate how users' emotional responses differ from one scientific topic to another. We find that research articles related to gender, genetics, or agricultural/environmental sciences elicit significantly different emotional responses from users than other research topics. We also find that there is generally a positive response to scientific research on Facebook, and that articles generating a positive emotional response are more likely to be widely shared---a conclusion that contradicts previous studies of other social media platforms.

Funder

Argonne National Laboratory

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Human-Computer Interaction,Social Sciences (miscellaneous)

Reference48 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gender-Based Analysis of User Reactions to Facebook Posts;Big Data Mining and Analytics;2024-03

2. Laughing at death: Facebook, the ‘haha’ reaction, and death coverage on local US news pages;Popular Communication;2023-12

3. Predicting Facebook sentiments towards research;Natural Language Processing Journal;2023-06

4. Análisis de las publicaciones con mayor repercusión en Facebook de los fact-checkers iberoamericanos en 2021;Revista ICONO 14. Revista científica de Comunicación y Tecnologías emergentes;2023-01-18

5. YouTube and science: models for research impact;Scientometrics;2022-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3