BayesWipe

Author:

De Sushovan1,Hu Yuheng2,Meduri Venkata Vamsikrishna3,Chen Yi4,Kambhampati Subbarao3

Affiliation:

1. Arizona State University

2. University of Illinois at Chicago

3. Arizona State University, Tempe, AZ

4. New Jersey Institute of Technology, Newark, NJ

Abstract

Recent efforts in data cleaning of structured data have focused exclusively on problems like data deduplication, record matching, and data standardization; none of the approaches addressing these problems focus on fixing incorrect attribute values in tuples. Correcting values in tuples is typically performed by a minimum cost repair of tuples that violate static constraints like Conditional Functional Dependencies (which have to be provided by domain experts or learned from a clean sample of the database). In this article, we provide a method for correcting individual attribute values in a structured database using a Bayesian generative model and a statistical error model learned from the noisy database directly. We thus avoid the necessity for a domain expert or clean master data. We also show how to efficiently perform consistent query answering using this model over a dirty database, in case write permissions to the database are unavailable. We evaluate our methods over both synthetic and real data.

Funder

ONR

Leir Charitable Foundations

ARO

NSF CAREER

Google Research

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems and Management,Information Systems

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient learning based approach for automatic record deduplication with benchmark datasets;Scientific Reports;2024-07-15

2. BUNNI: Learning Repair Actions in Rule-driven Data Cleaning;Journal of Data and Information Quality;2024-06-24

3. BClean: A Bayesian Data Cleaning System;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. A Perceptual Data Cleansing Model (SDCM) for Reducing the Dirty Data;2023 International Conference on Smart Computing and Application (ICSCA);2023-02-05

5. Finding High-quality Item Attributes for Recommendation;IEEE Transactions on Knowledge and Data Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3