Grammar-based whitebox fuzzing

Author:

Godefroid Patrice1,Kiezun Adam2,Levin Michael Y.3

Affiliation:

1. Microsoft Research, Redmond, WA, USA

2. Massachusetts Institute of Technology, Cambridge, MA, USA

3. Microsoft Center for Software Excellence, Redmond, WA, USA

Abstract

Whitebox fuzzing is a form of automatic dynamic test generation, based on symbolic execution and constraint solving, designed for security testing of large applications. Unfortunately, the current effectiveness of whitebox fuzzing is limited when testing applications with highly-structured inputs, such as compilers and interpreters. These applications process their inputs in stages, such as lexing, parsing and evaluation. Due to the enormous number of control paths in early processing stages, whitebox fuzzing rarely reaches parts of the application beyond those first stages. In this paper, we study how to enhance whitebox fuzzing of complex structured-input applications with a grammar-based specification of their valid inputs. We present a novel dynamic test generation algorithm where symbolic execution directly generates grammar-based constraints whose satisfiability is checked using a custom grammar-based constraint solver. We have implemented this algorithm and evaluated it on a large security-critical application, the JavaScript interpreter of Internet Explorer 7 (IE7). Results of our experiments show that grammar-based whitebox fuzzing explores deeper program paths and avoids dead-ends due to non-parsable inputs. Compared to regular whitebox fuzzing, grammar-based whitebox fuzzing increased coverage of the code generation module of the IE7 JavaScript interpreter from 53% to 81% while using three times fewer tests.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ConjunCT: Learning Inductive Invariants to Prove Unbounded Instruction Safety Against Microarchitectural Timing Attacks;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

2. FormatFuzzer : Effective Fuzzing of Binary File Formats;ACM Transactions on Software Engineering and Methodology;2023-12-22

3. Horus : Accelerating Kernel Fuzzing through Efficient Host-VM Memory Access Procedures;ACM Transactions on Software Engineering and Methodology;2023-11-24

4. Demystify the Fuzzing Methods: A Comprehensive Survey;ACM Computing Surveys;2023-10-05

5. NaturalFuzz: Natural Input Generation for Big Data Analytics;2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE);2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3