ShuffleFL: Addressing Heterogeneity in Multi-Device Federated Learning

Author:

Zhu Ran1ORCID,Yang Mingkun1ORCID,Wang Qing1ORCID

Affiliation:

1. Delft University of Technology, Delft, The Netherlands

Abstract

Federated Learning (FL) has emerged as a privacy-preserving paradigm for collaborative deep learning model training across distributed data silos. Despite its importance, FL faces challenges such as high latency and less effective global models. In this paper, we propose ShuffleFL, an innovative framework stemming from the hierarchical FL, which introduces a user layer between the FL devices and the FL server. ShuffleFL naturally groups devices based on their affiliations, e.g., belonging to the same user, to ease the strict privacy restriction-"data at the FL devices cannot be shared with others", thereby enabling the exchange of local samples among them. The user layer assumes a multi-faceted role, not just aggregating local updates but also coordinating data shuffling within affiliated devices. We formulate this data shuffling as an optimization problem, detailing our objectives to align local data closely with device computing capabilities and to ensure a more balanced data distribution at the intra-user devices. Through extensive experiments using realistic device profiles and five non-IID datasets, we demonstrate that ShuffleFL can improve inference accuracy by 2.81% to 7.85% and speed up the convergence by 4.11x to 36.56x when reaching the target accuracy.

Funder

HORIZON-MSCA

Publisher

Association for Computing Machinery (ACM)

Reference65 articles.

1. 2023. DeepSpeed. Flops profiler (2023). https://www.deepspeed.ai/tutorials/flops-profiler/#flops-measurement

2. Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough, and Venkatesh Saligrama. 2021. Federated learning based on dynamic regularization. arXiv preprint arXiv:2111.04263 (2021).

3. Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečny, Stefano Mazzocchi, Brendan McMahan, et al. 2019. Towards federated learning at scale: System design. In Proceedings of the machine learning and systems (MLSys).

4. Federated learning with hierarchical clustering of local updates to improve training on non-IID data

5. Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečny, H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3