Affiliation:
1. University of Technology, Sydney, NSW, Australia
Abstract
Editing faces in videos is a popular yet challenging task in computer vision and graphics that encompasses various applications, including facial attractiveness enhancement, makeup transfer, face replacement, and expression manipulation. Directly applying the existing warping methods to video face editing has the major problem of temporal incoherence in the synthesized videos, which cannot be addressed by simply employing face tracking techniques or manual interventions, as it is difficult to eliminate the subtly temporal incoherence of the facial feature point localizations in a video sequence. In this article, we propose a temporal-spatial-smooth warping (TSSW) method to achieve a high temporal coherence for video face editing. TSSW is based on two observations: (1) the control lattices are critical for generating warping surfaces and achieving the temporal coherence between consecutive video frames, and (2) the temporal coherence and spatial smoothness of the control lattices can be simultaneously and effectively preserved. Based upon these observations, we impose the temporal coherence constraint on the control lattices on two consecutive frames, as well as the spatial smoothness constraint on the control lattice on the current frame. TSSW calculates the control lattice (in either the horizontal or vertical direction) by updating the control lattice (in the corresponding direction) on its preceding frame, i.e., minimizing a novel energy function that unifies a data-driven term, a smoothness term, and feature point constraints. The contributions of this article are twofold: (1) we develop TSSW, which is robust to the subtly temporal incoherence of the facial feature point localizations and is effective to preserve the temporal coherence and spatial smoothness of the control lattices for editing faces in videos, and (2) we present a new unified video face editing framework that is capable for improving the performances of facial attractiveness enhancement, makeup transfer, face replacement, and expression manipulation.
Funder
Australian Research Council Projects
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献