Probabilistic Reframing for Cost-Sensitive Regression

Author:

Hern´ndez-Orallo José1

Affiliation:

1. Universitat Politècnica de València, Spain

Abstract

Common-day applications of predictive models usually involve the full use of the available contextual information. When the operating context changes, one may fine-tune the by-default (incontextual) prediction or may even abstain from predicting a value (a reject). Global reframing solutions, where the same function is applied to adapt the estimated outputs to a new cost context, are possible solutions here. An alternative approach, which has not been studied in a comprehensive way for regression in the knowledge discovery and data mining literature, is the use of a local (e.g., probabilistic) reframing approach, where decisions are made according to the estimated output and a reliability, confidence, or probability estimation. In this article, we advocate for a simple two-parameter (mean and variance) approach, working with a normal conditional probability density. Given the conditional mean produced by any regression technique, we develop lightweight “enrichment” methods that produce good estimates of the conditional variance, which are used by the probabilistic (local) reframing methods. We apply these methods to some very common families of cost-sensitive problems, such as optimal predictions in (auction) bids, asymmetric loss scenarios, and rejection rules.

Funder

TIN 2013-45732-C4-1-P

MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022

European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA)

PROMETEO2011/052

Ministerio de Economía y Competitividad in Spain (PCIN-2013-037)

TIN 2010-21062-C02-02

GVA projects PROMETEO/2008/051

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference65 articles.

1. Tuning Data Mining Methods for Cost-Sensitive Regression: A Study in Loan Charge-Off Forecasting

2. Bayesian approach to life testing and reliability estimation using asymmetric loss function;Basu A. P.;Journal of Statistical Planning and Inference,1992

3. Quantification via Probability Estimators

4. A. Bella C. Ferri J. Hernández-Orallo and M. J. Ramírez-Quintana. 2013. Aggregative quantification for regression. Data Mining and Knowledge Discovery (2013) 1--44. 10.1007/s10618-013-0308-z A. Bella C. Ferri J. Hernández-Orallo and M. J. Ramírez-Quintana. 2013. Aggregative quantification for regression. Data Mining and Knowledge Discovery (2013) 1--44. 10.1007/s10618-013-0308-z

5. A. Bella C. Ferri J. Hernández-Orallo and M. J. Ramírez-Quintana. 2009. Calibration of machine learning models. In Handbook of Research on Machine Learning Applications. IGI Global 128--146. A. Bella C. Ferri J. Hernández-Orallo and M. J. Ramírez-Quintana. 2009. Calibration of machine learning models. In Handbook of Research on Machine Learning Applications. IGI Global 128--146.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3