Exploration of Person-Independent BCIs for Internal and External Attention-Detection in Augmented Reality

Author:

Vortmann Lisa-Marie1,Putze Felix1

Affiliation:

1. Cognitive Systems Lab, University of Bremen, Bremen, Germany

Abstract

Adding attention-awareness to an Augmented Reality setting by using a Brain-Computer Interface promises many interesting new applications and improved usability. The possibly complicated setup and relatively long training period of EEG-based BCIs however, reduce this positive effect immensely. In this study, we aim at finding solutions for person-independent, training-free BCI integration into AR to classify internally and externally directed attention. We assessed several different classifier settings on a dataset of 14 participants consisting of simultaneously recorded EEG and eye tracking data. For this, we compared the classification accuracies of a linear algorithm, a non-linear algorithm, and a neural net that were trained on a specifically generated feature set, as well as a shallow neural net for raw EEG data. With a real-time system in mind, we also tested different window lengths of the data aiming at the best payoff between short window length and high classification accuracy. Our results showed that the shallow neural net based on 4-second raw EEG data windows was best suited for real-time person-independent classification. The accuracy for the binary classification of internal and external attention periods reached up to 88% accuracy with a model that was trained on a set of selected participants. On average, the person-independent classification rate reached 60%. Overall, the high individual differences could be seen in the results. In the future, further datasets are necessary to compare these results before optimizing a real-time person-independent attention classifier for AR.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A training and assessment system for human-computer interaction combining fNIRS and eye-tracking data;Advanced Engineering Informatics;2024-10

2. Multimodal Detection of External and Internal Attention in Virtual Reality using EEG and Eye Tracking Features;Proceedings of Mensch und Computer 2024;2024-09

3. Democratizing EEG: Embedding Electroencephalography in a Head-Mounted Display for Ubiquitous Brain-Computer Interfacing;International Journal of Human–Computer Interaction;2024-08-19

4. Multimodal Physiological Analysis of Impact of Emotion on Cognitive Control in VR;IEEE Transactions on Visualization and Computer Graphics;2024-05

5. Emotion Prediction Through Eye Tracking in Affective Computing Systems;2024 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops);2024-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3