MoveMine

Author:

Li Zhenhui1,Han Jiawei1,Ji Ming1,Tang Lu-An1,Yu Yintao1,Ding Bolin1,Lee Jae-Gil2,Kays Roland3

Affiliation:

1. University of Illinois at Urbana-Champaign, Urbana, IL

2. KAIST

3. New York State Museum

Abstract

With the maturity and wide availability of GPS, wireless, telecommunication, and Web technologies, massive amounts of object movement data have been collected from various moving object targets, such as animals, mobile devices, vehicles, and climate radars. Analyzing such data has deep implications in many applications, such as, ecological study, traffic control, mobile communication management, and climatological forecast. In this article, we focus our study on animal movement data analysis and examine advanced data mining methods for discovery of various animal movement patterns. In particular, we introduce a moving object data mining system, MoveMine, which integrates multiple data mining functions, including sophisticated pattern mining and trajectory analysis. In this system, two interesting moving object pattern mining functions are newly developed: (1) periodic behavior mining and (2) swarm pattern mining . For mining periodic behaviors, a reference location-based method is developed, which first detects the reference locations, discovers the periods in complex movements, and then finds periodic patterns by hierarchical clustering. For mining swarm patterns, an efficient method is developed to uncover flexible moving object clusters by relaxing the popularly-enforced collective movement constraints. In the MoveMine system, a set of commonly used moving object mining functions are built and a user-friendly interface is provided to facilitate interactive exploration of moving object data mining and flexible tuning of the mining constraints and parameters. MoveMine has been tested on multiple kinds of real datasets, especially for MoveBank applications and other moving object data analysis. The system will benefit scientists and other users to carry out versatile analysis tasks to analyze object movement regularities and anomalies. Moreover, it will benefit researchers to realize the importance and limitations of current techniques and promote future studies on moving object data mining. As expected, a mastery of animal movement patterns and trends will improve our understanding of the interactions between and the changes of the animal world and the ecosystem and therefore help ensure the sustainability of our ecosystem.

Funder

National Science Foundation

Division of Computing and Communication Foundations

U.S. Army Research Laboratory

Air Force Office of Scientific Research

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Co-occurrence Order-preserving Pattern Mining with Keypoint Alignment for Time Series;ACM Transactions on Management Information Systems;2024-06-12

2. Data Mining of Fertility Intention based on LSTM Neural Network;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

3. Collectively Simplifying Trajectories in a Database: A Query Accuracy Driven Approach;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Efficiently Finding Cyclical Patterns on Twitter Considering the Inherent Spatio-temporal Attributes of Data;JUCS - Journal of Universal Computer Science;2023-11-28

5. Doubly elastic net regularized online portfolio optimization with transaction costs;Scientific Reports;2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3