Agent-based homeostatic control for green energy in the smart grid

Author:

Ramchurn Sarvapali D.1,Vytelingum Perukrishnen1,Rogers Alex1,Jennings Nicholas R.1

Affiliation:

1. University of Southampton, Southampton, UK

Abstract

With dwindling nonrenewable energy reserves and the adverse effects of climate change, the development of the smart electricity grid is seen as key to solving global energy security issues and to reducing carbon emissions. In this respect, there is a growing need to integrate renewable (or green) energy sources in the grid. However, the intermittency of these energy sources requires that demand must also be made more responsive to changes in supply, and a number of smart grid technologies are being developed, such as high-capacity batteries and smart meters for the home, to enable consumers to be more responsive to conditions on the grid in real time. Traditional solutions based on these technologies, however, tend to ignore the fact that individual consumers will behave in such a way that best satisfies their own preferences to use or store energy (as opposed to that of the supplier or the grid operator). Hence, in practice, it is unclear how these solutions will cope with large numbers of consumers using their devices in this way. Against this background, in this article, we develop novel control mechanisms based on the use of autonomous agents to better incorporate consumer preferences in managing demand. These agents, residing on consumers' smart meters, can both communicate with the grid and optimize their owner's energy consumption to satisfy their preferences. More specifically, we provide a novel control mechanism that models and controls a system comprising of a green energy supplier operating within the grid and a number of individual homes (each possibly owning a storage device). This control mechanism is based on the concept of homeostasis whereby control signals are sent to individual components of a system, based on their continuous feedback, in order to change their state so that the system may reach a stable equilibrium. Thus, we define a new carbon-based pricing mechanism for this green energy supplier that takes advantage of carbon-intensity signals available on the Internet in order to provide real-time pricing. The pricing scheme is designed in such a way that it can be readily implemented using existing communication technologies and is easily understandable by consumers. Building upon this, we develop new control signals that the supplier can use to incentivize agents to shift demand (using their storage device) to times when green energy is available. Moreover, we show how these signals can be adapted according to changes in supply and to various degrees of penetration of storage in the system. We empirically evaluate our system and show that, when all homes are equipped with storage devices, the supplier can significantly reduce its reliance on other carbon-emitting power sources to cater for its own shortfalls. By so doing, the supplier reduces the carbon emission of the system by up to 25% while the consumer reduces its costs by up to 14.5%. Finally, we demonstrate that our homeostatic control mechanism is not sensitive to small prediction errors and the supplier is incentivized to accurately predict its green production to minimize costs.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Reference36 articles.

1. Alpaydin E. 2004. Introduction to Machine Learning. The MIT Press. Alpaydin E. 2004. Introduction to Machine Learning. The MIT Press.

2. Value of combining energy storage and wind in short-term energy and balancing markets

3. Bussmann S. Jennings N. R. and Wooldridge M. J. 2004. Multi-Agent Systems for Manufacturing Control: A Design Methodology. Springer-Verlag Berlin. Bussmann S. Jennings N. R. and Wooldridge M. J. 2004. Multi-Agent Systems for Manufacturing Control: A Design Methodology. Springer-Verlag Berlin.

4. DECC. 2009a. Smarter grids: The opportunity. Tech. rep. Department of Energy and Climate Change (DECC) UK Government. DECC. 2009a. Smarter grids: The opportunity. Tech. rep. Department of Energy and Climate Change (DECC) UK Government.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3