A Theory of Auto-Scaling for Resource Reservation in Cloud Services

Author:

Psychas Konstantinos1,Ghaderi Javad1

Affiliation:

1. Columbia University

Abstract

We consider a distributed server system consisting of a large number of servers, each with limited capacity on multiple resources (CPU, memory, disk, etc.). Jobs with different rewards arrive over time and require certain amounts of resources for the duration of their service. When a job arrives, the system must decide whether to admit it or reject it, and if admitted, in which server to schedule the job. The objective is to maximize the expected total reward received by the system. This problem is motivated by control of cloud computing clusters, in which, jobs are requests for Virtual Machines or Containers that reserve resources for various services, and rewards represent service priority of requests or price paid per time unit of service by clients. We study this problem in an asymptotic regime where the number of servers and jobs' arrival rates scale by a factor L, as L becomes large. We propose a resource reservation policy that asymptotically achieves at least 1/2, and under certain monotone property on jobs' rewards and resources, at least 11/4 of the optimal expected reward. The policy automatically scales the number of VM slots for each job type as the demand changes, and decides in which servers the slots should be created in advance, without the knowledge of traffic rates. It effectively tracks a low-complexity greedy packing of existing jobs in the system while maintaining only a small number, g(L) = w(logL), of reserved VM slots for high priority jobs that pack well.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference34 articles.

1. AWS container 2019. Amazon AWS Containers. https://aws.amazon.com/ containers/ AWS container 2019. Amazon AWS Containers. https://aws.amazon.com/ containers/

2. Asymptotic analysis of single resource loss systems in heavy traffic, with applications to integrated networks

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3