Efficient, Long-Term Logging of Rich Data Sensors Using Transient Sensor Nodes

Author:

Gomez Andres1,Sigrist Lukas1,Schalch Thomas1,Benini Luca2,Thiele Lothar3

Affiliation:

1. Eth Zürich, Switzerland

2. ETH Zürich and Univeristy of Bologna, Zurich, Switzerland

3. ETH Zürich, Zurich, Switzerland

Abstract

While energy harvesting is generally seen to be the key to power cyber-physical systems in a low-cost, long-term, efficient manner, it has generally required large energy storage devices to mitigate the effects of the source’s variability. The emerging class of transiently powered systems embrace this variability by performing computation in proportion to the energy harvested, thereby minimizing the obtrusive and expensive storage element. By using an efficient Energy Management Unit (EMU), small bursts of energy can be buffered in an optimally sized capacitor and used to supply generic loads, even when the average harvested power is only a fraction of that required for sustained system operation. Dynamic Energy Burst Scaling (DEBS) can be used by the load to dynamically configure the EMU to supply small bursts of energy at its optimal power point, independent from the harvester’s operating point. Parameters like the maximum burst size, the solar panel’s area, as well as the use of energy-efficient Non-Volatile Memory Hierarchy (NVMH) can have a significant impact on the transient system’s characteristics such as the wake-up time and the amount of work that can be done per unit of energy. Experimental data from a solar-powered, long-term autonomous image acquisition application show that, regardless of its configuration, the EMU can supply energy bursts to a 43.4mW load with efficiencies of up to 79.7% and can work with input power levels as low as 140μW. When the EMU is configured to use DEBS and NVMH, the total energy cost of acquiring, processing and storing an image can be reduced by 77.8%, at the price of increasing the energy buffer size by 65%.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Non-volatile State Retention Unit for Multi-storage Energy Management in Transient Systems;2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI);2023-06-08

2. Stateful Energy Management for Multi-Source Energy Harvesting Transient Computing Systems;2023 Design, Automation & Test in Europe Conference & Exhibition (DATE);2023-04

3. Dataflow Driven Partitioning of Machine Learning Applications for Optimal Energy Use in Batteryless Systems;ACM Transactions on Embedded Computing Systems;2022-09-30

4. The Case for Approximate Intermittent Computing;2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN);2022-05

5. Data-Driven Self-Learning Controller Design Approach for Power-Aware IoT Devices based on Double Q-Learning Strategy;2021 IEEE Symposium Series on Computational Intelligence (SSCI);2021-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3