Computing one billion roots using the tangent Graeffe method

Author:

van der Hoeven Joris1,Monagan Michael2

Affiliation:

1. CNRS, École polytechnique, Palaiseau, France

2. Simon Fraser University, Burnaby, British Columbia, Canada

Abstract

Let p be a prime of the form p = σ2 k + 1 with σ small and let F p denote the finite field with p elements. Let P ( z ) be a polynomial of degree d in F p [ z ] with d distinct roots in F p . For p =5 · 2 55 + 1 we can compute the roots of such polynomials of degree 10 9 . We believe we are the first to factor such polynomials of size one billion. We used a multi-core computer with two 10 core Intel Xeon E5 2680 v2 CPUs and 128 gigabytes of RAM. The factorization takes just under 4,000 seconds on 10 cores and uses 121 gigabytes of RAM. We used the tangent Graeffe root finding algorithm from [27, 19] which is a factor of O (log d ) faster than the Cantor-Zassenhaus algorithm. We implemented the tangent Graeffe algorithm in C using our own library of 64 bit integer FFT based in-place polynomial algorithms then parallelized the FFT and main steps using Cilk C. In this article we discuss the steps of the tangent Graeffe algorithm, the sub-algorithms that we used, how we parallelized them, and how we organized the memory so we could factor a polynomial of degree 10 9 . We give both a theoretical and practical comparison of the tangent Graeffe algorithm with the Cantor-Zassenhaus algorithm for root finding. We improve the complexity of the tangent Graeffe algorithm by a factor of 2. We present a new in-place product tree multiplication algorithm that is fully parallelizable. We present some timings comparing our software with Magma's polynomial factorization command. Polynomial root finding over smooth finite fields is a key ingredient for algorithms for sparse polynomial interpolation that are based on geometric sequences. This application was also one of our main motivations for the present work.

Publisher

Association for Computing Machinery (ACM)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the computation of rational solutions of underdetermined systems over a finite field;Journal of Complexity;2023-04

2. Root-Squaring for Root-Finding;Computer Algebra in Scientific Computing;2023

3. On the Complexity of Symbolic Computation;Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation;2022-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3