Scheduling in multichannel wireless networks with flow-level dynamics

Author:

Liu Shihuan1,Ying Lei1,Srikant R.2

Affiliation:

1. Iowa State University, Ames, IA, USA

2. University of Illinois at Urbana-Champaign, Urbana, IL, USA

Abstract

This paper studies scheduling in multichannel wireless networks with flow-level dynamics. We consider a downlink network with a single base station, M channels (frequency bands), and multiple mobile users (flows). We also assume mobiles dynamically join the network to receive finite-size files and leave after downloading the complete files. A recent study [16] has shown that the MaxWeight algorithm fails to be throughput-optimal under this flow-level dynamics. The main contribution of this paper is the development of joint channel-assignment and workload-based scheduling algorithms for multichannel downlink networks with dynamic flow arrivals/departures. We prove that these algorithms are throughput-optimal. Our simulations further demonstrate that a hybrid channel-assignment and workload-based scheduling algorithm significantly improves the network performance (in terms of both file-transfer delay and blocking probability) compared to the existing algorithms.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Scheduling for Unmanned Aerial Vehicle Networks With Flow-Level Dynamics;IEEE Transactions on Mobile Computing;2021-03-01

2. Throughput-Optimal H-QMW Scheduling for Hybrid Wireless Networks With Persistent and Dynamic Flows;IEEE Transactions on Wireless Communications;2020-02

3. Optical Wireless Channel Data Scheduling Using TLBO and Wavelength Division Multiplexing;International Journal of Interdisciplinary Telecommunications and Networking;2020-01

4. Delay-Based Back-Pressure Scheduling in Multihop Wireless Networks;IEEE/ACM Transactions on Networking;2013-10

5. Inefficiency of MaxWeight scheduling in spatial wireless networks;Computer Communications;2013-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3