Affiliation:
1. The University of Texas at Austin, Austin, TX
Abstract
We present a Scalable Distributed Information Management System (SDIMS) that
aggregates
information about large-scale networked systems and that can serve as a basic building block for a broad range of large-scale distributed applications by providing detailed views of nearby information and summary views of global information. To serve as a basic building block, a SDIMS should have four properties: scalability to many nodes and attributes, flexibility to accommodate a broad range of applications, administrative isolation for security and availability, and robustness to node and network failures. We design, implement and evaluate a SDIMS that (1) leverages Distributed Hash Tables (DHT) to create scalable aggregation trees, (2) provides flexibility through a simple API that lets applications control propagation of reads and writes, (3) provides administrative isolation through simple extensions to current DHT algorithms, and (4) achieves robustness to node and network reconfigurations through lazy reaggregation, on-demand reaggregation, and tunable spatial replication. Through extensive simulations and micro-benchmark experiments, we observe that our system is an order of magnitude more scalable than existing approaches, achieves isolation properties at the cost of modestly increased read latency in comparison to flat DHTs, and gracefully handles failures.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Software
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献