A scalable method for deductive generalization in the spreadsheet paradigm

Author:

Burnett Margaret1,Yang Sherry2,Summet Jay3

Affiliation:

1. Oregon State University, Corvallis, OR

2. Oregon Institute of Technology, Klamath Falls, OR

3. Oregon State University, Atlanta, GA

Abstract

In this paper, we present an efficient method for automatically generalizing programs written in spreadsheet languages. The strategy is to do generalization through incremental analysis of logical relationships among concrete program entities from the perspective of a particular computational goal. The method uses deductive dataflow analysis with algebraic back-substitution rather than inference with heuristics, and there is no need for generalization-related dialog with the user. We present the algorithms and their time complexities and show that, because the algorithms perform their analyses incrementally, on only the on-screen program elements rather than on the entire program, the method is scalable. Performance data is presented to help demonstrate the scalability.

Publisher

Association for Computing Machinery (ACM)

Subject

Human-Computer Interaction

Reference35 articles.

1. The Formulate visual programming language;Ambler A.;Dr. Dobb's Journal,1999

2. Generalizing selection in by-demonstration programming;Ambler A.;J. Vis. Lang. Comput.,1993

3. Interactive visual data abstraction in a declarative visual programming language;Burnett M.;J. Vis. Lang. Comput.,1994

4. Forms/3: a first-order visual language to explore the boundaries of the spreadsheet paradigm;Burnett M.;J. Funct. Program.,2001

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Design Space for End User Development in the Time of the Internet of Things;New Perspectives in End-User Development;2017

2. End User Development: Survey of an Emerging Field for Empowering People;ISRN Software Engineering;2013-06-10

3. Spatial graph grammars for graphical user interfaces;ACM Transactions on Computer-Human Interaction;2006-06

4. Natural programming languages and environments;Communications of the ACM;2004-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3