Speeding-up heuristic allocation, scheduling and binding with SAT-based abstraction/refinement techniques

Author:

Cabodi Gianpiero1,Lavagno Luciano1,Murciano Marco1,Kondratyev Alex2,Watanabe Yosinori2

Affiliation:

1. Politecnico di Torino, Turin, Italy

2. Cadence Design Systems, Inc., San Jose, CA

Abstract

Hardware synthesis is the process by which system-level, Register Transfer (RT)-level, or behavioral descriptions can be turned into real implementations, in terms of logic gates. Scheduling is one of the most time-consuming steps in the overall design flow, and may become much more complex when performing hardware synthesis from high-level specifications. Exploiting a single scheduling strategy on very large designs is often reductive and potentially inadequate. Furthermore, finding the “best” single candidate among all possible scheduling algorithms is practically infeasible. In this article we introduce a hybrid scheduling approach that is a preliminary step towards a comprehensive solution not yet provided by industrial or by academic solutions. Our method relies on an abstract symbolic representation of data flow nodes (operations) bound to control flow paths: it produces a more realistic lower bound during the prescheduling resource estimation step and speeds up slower but accurate heuristic scheduling techniques, thus achieving a globally improved result.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Speeding Up Assumption-Based SAT;Lecture Notes in Computer Science;2019

2. The Incremental Satisfiability Problem for a Two Conjunctive Normal Form;Electronic Notes in Theoretical Computer Science;2016-12

3. Ultimately Incremental SAT;Lecture Notes in Computer Science;2014

4. Efficient SAT Solving under Assumptions;Theory and Applications of Satisfiability Testing – SAT 2012;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3