Client-Side Journaling for Durable Shared Storage

Author:

Hatzieleftheriou Andromachi1,Anastasiadis Stergios V.1

Affiliation:

1. University of Ioannina, Ioannina, Greece

Abstract

Hardware consolidation in the datacenter often leads to scalability bottlenecks from heavy utilization of critical resources, such as the storage and network bandwidth. Client-side caching on durable media is already applied at block level to reduce the storage backend load but has received criticism for added overhead, restricted sharing, and possible data loss at client crash. We introduce a journal to the kernel-level client of an object-based distributed filesystem to improve durability at high I/O performance and reduced shared resource utilization. Storage virtualization at the file interface achieves clear consistency semantics across data and metadata, supports native file sharing among clients, and provides flexible configuration of durable data staging at the host. Over a prototype that we have implemented, we experimentally quantify the performance and efficiency of the proposed Arion system in comparison to a production system. We run microbenchmarks and application-level workloads over a local cluster and a public cloud. We demonstrate reduced latency by 60% and improved performance up to 150% at reduced server network and disk bandwidth by 41% and 77%, respectively. The performance improvement reaches 92% for 16 relational databases as clients and gets as high as 11.3x with two key-value stores as clients.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3