CovLets

Author:

Zhang Zhaoxin1,Guo Changyong1,Meng Fanzhi2,Xu Taizhong3,Huang Junkai1

Affiliation:

1. Harbin Institute of Technology, Weihai, China

2. China Academy of Engineering Physics, Mianyang, China

3. National Computer Network Emergency Response Technical Team/Coordination Center, Beijing, China

Abstract

State-of-the-art techniques for image and video classification take a bottom-up approach where local features are aggregated into a global final representation. Existing frameworks (i.e., bag of words or Fisher vectors) are specifically designed to aggregate vector-valued features such as SIFT descriptors. In this article, we propose a technique to aggregate local descriptors in the form of covariance descriptors (CovDs) into a rich descriptor, which in essence benefit from the second-order statistics along the coding pipeline. The difficulty in aggregating CovDs arises from the fact that CovDs lie on the Riemannian manifold of symmetric positive definite (SPD) matrices. Therefore, the aggregating scheme must take advantage of metrics and the geometry of the SPD manifolds. In our proposal, we make use of the Stein divergence and Nyström method to embed the SPD manifold into a Hilbert space. We compare our proposal, dubbed CovLets, against state-of-the-art methods on several image and video classification problems including facial expression recognition and action recognition.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3