Enabling Surveillance Cameras to Navigate

Author:

Dong Liang1,Xu Jingao1,Chi Guoxuan1,Li Danyang1,Zhang Xinglin2,Li Jianbo3,Ma Qiang1,Yang Zheng1

Affiliation:

1. Tsinghua University, Beijing, China

2. School of Computer Science and Engineering, South China University of Technology, China

3. Qingdao University, China

Abstract

Smartphone localization is essential to a wide spectrum of applications in the era of mobile computing. The ubiquity of smartphone mobile cameras and surveillance ambient cameras holds promise for offering sub-meter accuracy localization services thanks to the maturity of computer vision techniques. In general, ambient-camera-based solutions are able to localize pedestrians in video frames at fine-grained, but the tracking performance under dynamic environments remains unreliable. On the contrary, mobile-camera-based solutions are capable of continuously tracking pedestrians; however, they usually involve constructing a large volume of image database, a labor-intensive overhead for practical deployment. We observe an opportunity of integrating these two most promising approaches to overcome above limitations and revisit the problem of smartphone localization with a fresh perspective. However, fusing mobile-camera-based and ambient-camera-based systems is non-trivial due to disparity of camera in terms of perspectives, parameters and incorrespondence of localization results. In this article, we propose iMAC, an integrated mobile cameras and ambient cameras based localization system that achieves sub-meter accuracy and enhanced robustness with zero-human start-up effort. The key innovation of iMAC is a well-designed fusing frame to eliminate disparity of cameras including a construction of projection map function to automatically calibrate ambient cameras, an instant crowd fingerprints model to describe user motion patterns, and a confidence-aware matching algorithm to associate results from two sub-systems. We fully implement iMAC on commodity smartphones and validate its performance in five different scenarios. The results show that iMAC achieves a remarkable localization accuracy of 0.68 m, outperforming the state-of-the-art systems by >75%.

Funder

National Key R&D Program of China

NSFC

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Reference40 articles.

1. Dynamic Optimization of Human Walking

2. A survey of approaches and trends in person re-identification

3. Enabling public cameras to talk to the public. In Proceedings of the ACM on Interactive;Cao Siyuan;Mobile, Wearable and Ubiquitous Technologies,2018

4. OpenPose: Realtime multi-person 2D pose estimation using part affinity fields;Cao Zhe;IEEE Transactions on Pattern Analysis and Machine Intelligence,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VILL: Toward Efficient and Automatic Visual Landmark Labeling;ACM Transactions on Sensor Networks;2023-04-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3