1. Yueran Bai , Yingying Wang , Yunhai Tong , Yang Yang , Qiyue Liu , and Junhui Liu . 2020 . Boundary content graph neural network for temporal action proposal generation. In Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020 , Proceedings, Part XXVIII 16 . 121--137. Yueran Bai, Yingying Wang, Yunhai Tong, Yang Yang, Qiyue Liu, and Junhui Liu. 2020. Boundary content graph neural network for temporal action proposal generation. In Computer Vision--ECCV 2020: 16th European Conference, Glasgow, UK, August 23--28, 2020, Proceedings, Part XXVIII 16. 121--137.
2. Lars Buitinck Gilles Louppe Mathieu Blondel Fabian Pedregosa Andreas Mueller Olivier Grisel Vlad Niculae Peter Prettenhofer Alexandre Gramfort Jaques Grobler etal 2013. API design for machine learning software: experiences from the scikit-learn project. arXiv preprint arXiv:1309.0238 (2013). Lars Buitinck Gilles Louppe Mathieu Blondel Fabian Pedregosa Andreas Mueller Olivier Grisel Vlad Niculae Peter Prettenhofer Alexandre Gramfort Jaques Grobler et al. 2013. API design for machine learning software: experiences from the scikit-learn project. arXiv preprint arXiv:1309.0238 (2013).
3. Trust-aware location recommendation in location-based social networks: A graph-based approach
4. Ting Chen , Simon Kornblith , Mohammad Norouzi , and Geoffrey Hinton . 2020 a. A simple framework for contrastive learning of visual representations . In International conference on machine learning. PMLR, 1597--1607 . Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020a. A simple framework for contrastive learning of visual representations. In International conference on machine learning. PMLR, 1597--1607.
5. Ting Chen , Simon Kornblith , Kevin Swersky , Mohammad Norouzi , and Geoffrey E Hinton . 2020b. Big self-supervised models are strong semi-supervised learners. Advances in neural information processing systems , Vol. 33 ( 2020 ), 22243--22255. Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. 2020b. Big self-supervised models are strong semi-supervised learners. Advances in neural information processing systems, Vol. 33 (2020), 22243--22255.