1. Benchmarking state-of-the-art classification algorithms for credit scoring
2. Szymon Bobek , Paweł Bałaga , and Grzegorz J . Nalepa . 2021 . Towards Model-Agnostic Ensemble Explanations. In Computational Science -- ICCS 2021, Maciej Paszynski, Dieter Kranzlmüller, Valeria V. Krzhizhanovskaya, Jack J. Dongarra, and Peter M.A. Sloot (Eds.). Springer International Publishing , Cham, 39--51. Szymon Bobek, Paweł Bałaga, and Grzegorz J. Nalepa. 2021. Towards Model-Agnostic Ensemble Explanations. In Computational Science -- ICCS 2021, Maciej Paszynski, Dieter Kranzlmüller, Valeria V. Krzhizhanovskaya, Jack J. Dongarra, and Peter M.A. Sloot (Eds.). Springer International Publishing, Cham, 39--51.
3. Francesco Bodria , Fosca Giannotti , Riccardo Guidotti , Francesca Naretto , Dino Pedreschi , and Salvatore Rinzivillo . 2023. Benchmarking and survey of explanation methods for black box models. Data Mining and Knowledge Discovery ( 2023 ), 1--60. Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pedreschi, and Salvatore Rinzivillo. 2023. Benchmarking and survey of explanation methods for black box models. Data Mining and Knowledge Discovery (2023), 1--60.
4. Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml
5. Aparna Balagopalan et. al. 2022. The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations. FAccT ( 2022 ). https://arxiv.org/abs/2205.03295 Aparna Balagopalan et. al. 2022. The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations. FAccT (2022). https://arxiv.org/abs/2205.03295