Improving Graph Domain Adaptation with Network Hierarchy

Author:

Shi Boshen1ORCID,Wang Yongqing2ORCID,Guo Fangda2ORCID,Shao Jiangli1ORCID,Shen Huawei1ORCID,Cheng Xueqi1ORCID

Affiliation:

1. Institute of Computing Technology, CAS & University of Chinese Academy of Sciences, Beijing, China

2. Institute of Computing Technology, CAS, Beijing, China

Funder

National Natural Science Foundation of China

National Key R&D Program Young Scientists Project

China Postdoctoral Science Foundation

Publisher

ACM

Reference49 articles.

1. Shai Ben-David , John Blitzer , Koby Crammer , Alex Kulesza , Fernando Pereira , and Jennifer Wortman Vaughan . 2010. A theory of learning from different domains. Machine learning , Vol. 79 , 1 ( 2010 ), 151--175. Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan. 2010. A theory of learning from different domains. Machine learning, Vol. 79, 1 (2010), 151--175.

2. Graph Neural Networks Pretraining Through Inherent Supervision for Molecular Property Prediction

3. Fast unfolding of communities in large networks

4. Ruichu Cai , Fengzhu Wu , Zijian Li , Pengfei Wei , Lingling Yi , and Kun Zhang . 2021. Graph domain adaptation: A generative view. arXiv preprint arXiv:2106.07482 ( 2021 ). Ruichu Cai, Fengzhu Wu, Zijian Li, Pengfei Wei, Lingling Yi, and Kun Zhang. 2021. Graph domain adaptation: A generative view. arXiv preprint arXiv:2106.07482 (2021).

5. Aaron Clauset , Cristopher Moore , and Mark EJ Newman . 2007. Structural inference of hierarchies in networks . In Statistical Network Analysis: Models, Issues, and New Directions: ICML 2006 Workshop on Statistical Network Analysis , Pittsburgh, PA, USA , June 29, 2006 , Revised Selected Papers. Springer , 1--13. Aaron Clauset, Cristopher Moore, and Mark EJ Newman. 2007. Structural inference of hierarchies in networks. In Statistical Network Analysis: Models, Issues, and New Directions: ICML 2006 Workshop on Statistical Network Analysis, Pittsburgh, PA, USA, June 29, 2006, Revised Selected Papers. Springer, 1--13.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3