An Unified Search and Recommendation Foundation Model for Cold-Start Scenario

Author:

Gong Yuqi1ORCID,Ding Xichen1ORCID,Su Yehui1ORCID,Shen Kaiming1ORCID,Liu Zhongyi2ORCID,Zhang Guannan2ORCID

Affiliation:

1. Ant Group, Beijing, China

2. Ant Group, Hangzhou, China

Publisher

ACM

Reference27 articles.

1. Qingyao Ai , Yongfeng Zhang , Keping Bi , Xu Chen , and W. Bruce Croft . 2017. Learning a Hierarchical Embedding Model for Personalized Product Search . In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (Shinjuku , Tokyo, Japan) (SIGIR '17). Association for Computing Machinery, New York, NY, USA, 645--654. https://doi.org/10.1145/3077136.3080813 10.1145/3077136.3080813 Qingyao Ai, Yongfeng Zhang, Keping Bi, Xu Chen, and W. Bruce Croft. 2017. Learning a Hierarchical Embedding Model for Personalized Product Search. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (Shinjuku, Tokyo, Japan) (SIGIR '17). Association for Computing Machinery, New York, NY, USA, 645--654. https://doi.org/10.1145/3077136.3080813

2. Tom B. Brown , Benjamin Mann , Nick Ryder , Melanie Subbiah , Jared Kaplan , Prafulla Dhariwal , Arvind Neelakantan , Pranav Shyam , Girish Sastry , Amanda Askell , Sandhini Agarwal , Ariel Herbert-Voss , Gretchen Krueger , Tom Henighan , Rewon Child , Aditya Ramesh , Daniel M. Ziegler , Jeffrey Wu , Clemens Winter , Christopher Hesse , Mark Chen , Eric Sigler , Mateusz Litwin , Scott Gray , Benjamin Chess , Jack Clark , Christopher Berner , Sam McCandlish , Alec Radford , Ilya Sutskever , and Dario Amodei . 2020 . Language Models are Few-Shot Learners . In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020 , NeurIPS 2020, December 6--12, 2020, virtual, Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6--12, 2020, virtual, Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.).

3. Zeyu Cui , Jianxin Ma , Chang Zhou , Jingren Zhou , and Hongxia Yang . 2022. M6-Rec: Generative Pretrained Language Models are Open-Ended Recommender Systems. CoRR abs/2205.08084 ( 2022 ). Zeyu Cui, Jianxin Ma, Chang Zhou, Jingren Zhou, and Hongxia Yang. 2022. M6-Rec: Generative Pretrained Language Models are Open-Ended Recommender Systems. CoRR abs/2205.08084 (2022).

4. Zeyu Cui Jianxin Ma Chang Zhou Jingren Zhou and Hongxia Yang. 2022. M6-Rec: Generative Pretrained Language Models are Open-Ended Recommender Systems. arXiv:2205.08084 [cs.IR] Zeyu Cui Jianxin Ma Chang Zhou Jingren Zhou and Hongxia Yang. 2022. M6-Rec: Generative Pretrained Language Models are Open-Ended Recommender Systems. arXiv:2205.08084 [cs.IR]

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UniSAR: Modeling User Transition Behaviors between Search and Recommendation;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. Data-efficient Fine-tuning for LLM-based Recommendation;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

3. UnifiedSSR: A Unified Framework of Sequential Search and Recommendation;Proceedings of the ACM Web Conference 2024;2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3