Mask- and Contrast-Enhanced Spatio-Temporal Learning for Urban Flow Prediction

Author:

Zhang Xu1ORCID,Gong Yongshun2ORCID,Zhang Xinxin2ORCID,Wu Xiaoming1ORCID,Zhang Chengqi3ORCID,Dong Xiangjun1ORCID

Affiliation:

1. Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences) & Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan, China

2. School of Software, Shandong University, Jinan, China

3. Centre for Artificial inteligence, Facuty of Engineering and informalion Technology, Universily of Technology Sydney, Sydney, NSW, Australia

Funder

Open Fund of Beijing Key Laboratory of Traffic Data Analysis and Mining

Natural Science Foundation of Shandong Province

Shandong Excellent Young Scientists Fund (Oversea)

Taishan Scholar Project of Shandong Province

Fundamental Research Promotion Plan of Qilu University of Technology (Shandong Academy of Sciences)

National Natural Science Foundation of China

Publisher

ACM

Reference46 articles.

1. Taghreed Alghamdi , Khalid Elgazzar , Magdi Bayoumi , Taysseer Sharaf , and Sumit Shah . 2019. Forecasting traffic congestion using ARIMA modeling. In 2019 15th international wireless communications & mobile computing conference (IWCMC) . IEEE , 1227--1232. Taghreed Alghamdi, Khalid Elgazzar, Magdi Bayoumi, Taysseer Sharaf, and Sumit Shah. 2019. Forecasting traffic congestion using ARIMA modeling. In 2019 15th international wireless communications & mobile computing conference (IWCMC). IEEE, 1227--1232.

2. Lei Bai , Lina Yao , Can Li , Xianzhi Wang , and Can Wang . 2020. Adaptive graph convolutional recurrent network for traffic forecasting. Advances in neural information processing systems , Vol. 33 ( 2020 ), 17804--17815. Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive graph convolutional recurrent network for traffic forecasting. Advances in neural information processing systems, Vol. 33 (2020), 17804--17815.

3. Defu Cao , Yujing Wang , Juanyong Duan , Ce Zhang , Xia Zhu , Congrui Huang , Yunhai Tong , Bixiong Xu , Jing Bai , Jie Tong , and Qi Zhang . 2021. Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting. CoRR , Vol. abs/ 2103 .07719 ( 2021 ). showeprint[arXiv]2103.07719 https://arxiv.org/abs/2103.07719 Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bixiong Xu, Jing Bai, Jie Tong, and Qi Zhang. 2021. Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting. CoRR, Vol. abs/2103.07719 (2021). showeprint[arXiv]2103.07719 https://arxiv.org/abs/2103.07719

4. Long-Term Human Motion Prediction with Scene Context

5. DynamoNet: Dynamic Action and Motion Network

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Urban region representation learning with human trajectories: a multi-view approach incorporating transition, spatial, and temporal perspectives;GIScience & Remote Sensing;2024-09-04

2. M$^{2}$STL: Multi-Range Multi-Level Spatial-Temporal Learning Model for Network Traffic Prediction;IEEE Transactions on Network Science and Engineering;2024-09

3. Urban Foundation Models: A Survey;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. UniST: A Prompt-Empowered Universal Model for Urban Spatio-Temporal Prediction;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

5. Spatio-Temporal Enhanced Contrastive and Contextual Learning for Weather Forecasting;IEEE Transactions on Knowledge and Data Engineering;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3