Large Language Models as Zero-Shot Conversational Recommenders

Author:

He Zhankui1ORCID,Xie Zhouhang1ORCID,Jha Rahul2ORCID,Steck Harald2ORCID,Liang Dawen2ORCID,Feng Yesu2ORCID,Majumder Bodhisattwa Prasad1ORCID,Kallus Nathan3ORCID,Mcauley Julian1ORCID

Affiliation:

1. University of California, San Diego, La Jolla, CA, USA

2. Netflix Inc., Los Gatos, CA, USA

3. Netflix Inc. & Cornell University, Los Gatos, CA, USA

Funder

Netflix Funding

Publisher

ACM

Reference75 articles.

1. DBpedia: A Nucleus for a Web of Open Data

2. Payal Bajaj , Daniel Campos , Nick Craswell , Li Deng , Jianfeng Gao , Xiaodong Liu , Rangan Majumder , Andrew McNamara , Bhaskar Mitra , Tri Nguyen , Mir Rosenberg , Xia Song , Alina Stoica , Saurabh Tiwary , and Tong Wang . 2018 . MS MARCO: A Human Generated MAchine Reading COmprehension Dataset. arxiv: 1611.09268 [cs.CL] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. 2018. MS MARCO: A Human Generated MAchine Reading COmprehension Dataset. arxiv: 1611.09268 [cs.CL]

3. Keqin Bao , Jizhi Zhang , Yang Zhang , Wenjie Wang , Fuli Feng , and Xiangnan He. 2023. TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. arXiv preprint arXiv:2305.00447 ( 2023 ). Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He. 2023. TALLRec: An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation. arXiv preprint arXiv:2305.00447 (2023).

4. Tom Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared D Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell etal 2020b. Language models are few-shot learners. Advances in neural information processing systems Vol. 33 (2020) 1877--1901. Tom Brown Benjamin Mann Nick Ryder Melanie Subbiah Jared D Kaplan Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry Amanda Askell et al. 2020b. Language models are few-shot learners. Advances in neural information processing systems Vol. 33 (2020) 1877--1901.

5. Tom Brown , Benjamin Mann , Nick Ryder , Melanie Subbiah , Jared D Kaplan , Prafulla Dhariwal , Arvind Neelakantan , Pranav Shyam , Girish Sastry , Amanda Askell , Sandhini Agarwal , Ariel Herbert-Voss , Gretchen Krueger , Tom Henighan , Rewon Child , Aditya Ramesh , Daniel Ziegler , Jeffrey Wu , Clemens Winter , Chris Hesse , Mark Chen , Eric Sigler , Mateusz Litwin , Scott Gray , Benjamin Chess , Jack Clark , Christopher Berner , Sam McCandlish , Alec Radford , Ilya Sutskever , and Dario Amodei . 2020 a. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H . Lin (Eds.) , Vol. 33 . Curran Associates, Inc. , 1877--1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020a. Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877--1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding Biases in ChatGPT-based Recommender Systems: Provider Fairness, Temporal Stability, and Recency;ACM Transactions on Recommender Systems;2024-08-28

2. Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. A survey on large language models for recommendation;World Wide Web;2024-08-22

4. Relation labeling in product knowledge graphs with large language models for e-commerce;International Journal of Machine Learning and Cybernetics;2024-08-15

5. How Can Recommender Systems Benefit from Large Language Models: A Survey;ACM Transactions on Information Systems;2024-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3