Attacking Neural Networks with Neural Networks: Towards Deep Synchronization for Backdoor Attacks

Author:

Guan Zihan1ORCID,Sun Lichao2ORCID,Du Mengnan3ORCID,Liu Ninghao1ORCID

Affiliation:

1. University of Georgia, Athens, GA, USA

2. Lehigh University, Bethlehem, PA, USA

3. New Jersey Institute of Technology, Newark, NJ, USA

Funder

NSF (National Science Foundation)

Publisher

ACM

Reference70 articles.

1. A New Backdoor Attack in CNNS by Training Set Corruption Without Label Poisoning

2. Weixin Chen Baoyuan Wu and Haoqian Wang. 2022. Effective Backdoor Defense by Exploiting Sensitivity of Poisoned Samples. In Advances in Neural Information Processing Systems Alice H. Oh Alekh Agarwal Danielle Belgrave and Kyunghyun Cho (Eds.). https://openreview.net/forum?id=AsH-Tx2U0Ug Weixin Chen Baoyuan Wu and Haoqian Wang. 2022. Effective Backdoor Defense by Exploiting Sensitivity of Poisoned Samples. In Advances in Neural Information Processing Systems Alice H. Oh Alekh Agarwal Danielle Belgrave and Kyunghyun Cho (Eds.). https://openreview.net/forum?id=AsH-Tx2U0Ug

3. Xinyun Chen , Chang Liu , Bo Li , Kimberly Lu , and Dawn Song . 2017. Targeted backdoor attacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526 ( 2017 ). Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted backdoor attacks on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017).

4. Bao Gia Doan , Ehsan Abbasnejad , and Damith C. Ranasinghe . 2020 . Februus: Input Purification Defense Against Trojan Attacks on Deep Neural Network Systems. In Annual Computer Security Applications Conference ( Austin, USA) (ACSAC '20). Association for Computing Machinery, New York, NY, USA, 897--912. https://doi.org/10.1145/3427228.3427264 10.1145/3427228.3427264 Bao Gia Doan, Ehsan Abbasnejad, and Damith C. Ranasinghe. 2020. Februus: Input Purification Defense Against Trojan Attacks on Deep Neural Network Systems. In Annual Computer Security Applications Conference (Austin, USA) (ACSAC '20). Association for Computing Machinery, New York, NY, USA, 897--912. https://doi.org/10.1145/3427228.3427264

5. Khoa Doan , Yingjie Lao , Weijie Zhao , and Ping Li . 2021 . LIRA: Learnable , Imperceptible and Robust Backdoor Attacks. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 11946--11956 . https://doi.org/10.1109/ICCV48922.2021.01175 10.1109/ICCV48922.2021.01175 Khoa Doan, Yingjie Lao, Weijie Zhao, and Ping Li. 2021. LIRA: Learnable, Imperceptible and Robust Backdoor Attacks. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 11946--11956. https://doi.org/10.1109/ICCV48922.2021.01175

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3