How Expressive are Graph Neural Networks in Recommendation?

Author:

Cai Xuheng1ORCID,Xia Lianghao1ORCID,Ren Xubin1ORCID,Huang Chao1ORCID

Affiliation:

1. The University of Hong Kong, Hong Kong, China

Publisher

ACM

Reference40 articles.

1. Ralph Abboud , Ismail Ilkan Ceylan , Martin Grohe, and Thomas Lukasiewicz. 2020 . The surprising power of graph neural networks with random node initialization. arXiv preprint arXiv:2010.01179 (2020). Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. 2020. The surprising power of graph neural networks with random node initialization. arXiv preprint arXiv:2010.01179 (2020).

2. Jérémie Bouttier , Philippe Di Francesco, and Emmanuel Guitter . 2003 . Geodesic distance in planar graphs. Nuclear physics B, Vol. 663 , 3 (2003), 535--567. Jérémie Bouttier, Philippe Di Francesco, and Emmanuel Guitter. 2003. Geodesic distance in planar graphs. Nuclear physics B, Vol. 663, 3 (2003), 535--567.

3. Xuheng Cai , Chao Huang , Lianghao Xia , and Xubin Ren . 2023. LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation. arXiv preprint arXiv:2302.08191 ( 2023 ). Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2023. LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation. arXiv preprint arXiv:2302.08191 (2023).

4. Benjamin Paul Chamberlain , Sergey Shirobokov , Emanuele Rossi , Fabrizio Frasca , Thomas Markovich , Nils Hammerla , Michael M Bronstein , and Max Hansmire . 2022. Graph Neural Networks for Link Prediction with Subgraph Sketching. arXiv preprint arXiv:2209.15486 ( 2022 ). Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. 2022. Graph Neural Networks for Link Prediction with Subgraph Sketching. arXiv preprint arXiv:2209.15486 (2022).

5. Lei Chen , Le Wu , Richang Hong , Kun Zhang , and Meng Wang . 2020 . Revisiting Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach. In AAAI Conference on Artificial Intelligence (AAAI) , Vol. 34 . 27--34. Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach. In AAAI Conference on Artificial Intelligence (AAAI), Vol. 34. 27--34.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TCGC: Temporal Collaboration-Aware Graph Co-Evolution Learning for Dynamic Recommendation;ACM Transactions on Information Systems;2024-08-27

2. How Powerful is Graph Filtering for Recommendation;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3