1. Ralph Abboud , Ismail Ilkan Ceylan , Martin Grohe, and Thomas Lukasiewicz. 2020 . The surprising power of graph neural networks with random node initialization. arXiv preprint arXiv:2010.01179 (2020). Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. 2020. The surprising power of graph neural networks with random node initialization. arXiv preprint arXiv:2010.01179 (2020).
2. Jérémie Bouttier , Philippe Di Francesco, and Emmanuel Guitter . 2003 . Geodesic distance in planar graphs. Nuclear physics B, Vol. 663 , 3 (2003), 535--567. Jérémie Bouttier, Philippe Di Francesco, and Emmanuel Guitter. 2003. Geodesic distance in planar graphs. Nuclear physics B, Vol. 663, 3 (2003), 535--567.
3. Xuheng Cai , Chao Huang , Lianghao Xia , and Xubin Ren . 2023. LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation. arXiv preprint arXiv:2302.08191 ( 2023 ). Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2023. LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation. arXiv preprint arXiv:2302.08191 (2023).
4. Benjamin Paul Chamberlain , Sergey Shirobokov , Emanuele Rossi , Fabrizio Frasca , Thomas Markovich , Nils Hammerla , Michael M Bronstein , and Max Hansmire . 2022. Graph Neural Networks for Link Prediction with Subgraph Sketching. arXiv preprint arXiv:2209.15486 ( 2022 ). Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. 2022. Graph Neural Networks for Link Prediction with Subgraph Sketching. arXiv preprint arXiv:2209.15486 (2022).
5. Lei Chen , Le Wu , Richang Hong , Kun Zhang , and Meng Wang . 2020 . Revisiting Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach. In AAAI Conference on Artificial Intelligence (AAAI) , Vol. 34 . 27--34. Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting Graph Based Collaborative Filtering: A Linear Residual Graph Convolutional Network Approach. In AAAI Conference on Artificial Intelligence (AAAI), Vol. 34. 27--34.