Benchmarking Unsupervised Outlier Detection with Realistic Synthetic Data

Author:

Steinbuss Georg1ORCID,Böhm Klemens1

Affiliation:

1. Karlsruhe Institute of Technology (KIT), Germany

Abstract

Benchmarking unsupervised outlier detection is difficult. Outliers are rare, and existing benchmark data contains outliers with various and unknown characteristics. Fully synthetic data usually consists of outliers and regular instances with clear characteristics and thus allows for a more meaningful evaluation of detection methods in principle. Nonetheless, there have only been few attempts to include synthetic data in benchmarks for outlier detection. This might be due to the imprecise notion of outliers or to the difficulty to arrive at a good coverage of different domains with synthetic data. In this work, we propose a generic process for the generation of datasets for such benchmarking. The core idea is to reconstruct regular instances from existing real-world benchmark data while generating outliers so that they exhibit insightful characteristics. We propose and describe a generic process for the benchmarking of unsupervised outlier detection, as sketched so far. We then describe three instantiations of this generic process that generate outliers with specific characteristics, like local outliers. To validate our process, we perform a benchmark with state-of-the-art detection methods and carry out experiments to study the quality of data reconstructed in this way. Next to showcasing the workflow, this confirms the usefulness of our proposed process. In particular, our process yields regular instances close to the ones from real data. Summing up, we propose and validate a new and practical process for the benchmarking of unsupervised outlier detection.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Outlier Detection in Auditing: Integrating Unsupervised Learning within a Multilevel Framework for General Ledger Analysis;Journal of Information Systems;2024-06-14

2. Understanding the limitations of self-supervised learning for tabular anomaly detection;Pattern Analysis and Applications;2024-03-12

3. Synthetic Data Generation;Advances in Business Information Systems and Analytics;2024-01-16

4. Using Autonomous Outlier Detection Methods for Thermophysical Property Data;Journal of Chemical & Engineering Data;2024-01-12

5. A General Framework for the Assessment of Detectors of Anomalies in Time Series;IEEE Transactions on Industrial Informatics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3