Effect of communication overheads on Time Warp performance

Author:

Carothers Christopher D.1,Fujimoto Richard M.1,England Paul2

Affiliation:

1. College of Computing, Georgia Institute of Technology, Atlanta, Georgia

2. MRE-2L-336, Bellcore, Morristown, New Jersey

Abstract

This paper describes results of an empirical study to evaluate the effect of communications delays on the performance of the Time Warp mechanism in order to assess the effectiveness of Time Warp in distributed computing environments. An implementation of Time Warp on a collection of networked workstations is used in this study. Performance using synchronous and asynchronous message passing primitives are compared, and it is observed that Time Warp experiences much more rolled back computation when using the synchronous primitives for certain applications. Message passing is decomposed into a computation component at the sender and receiver processors, and a transmission delay component that represents the amount of time the message remains “in transit” within the network. The effect of each of these components on Time Warp performance is studied. It is observed that communications latency in distributed computing environments can significantly degrade the efficiency of Time Warp for applications containing large numbers of simulator objects with small event granularity (by increasing the amount of rolled back computation), particularly applications using “self-driving” simulator objects. However, for applications containing large grained events, communication delay appears to have little effect on rollback behavior in Time Warp.

Publisher

Association for Computing Machinery (ACM)

Reference17 articles.

1. Calendar queues: a fast 0(1) priority queue implementation for the simulation event set problem

2. Personal communications-a viewpoint

3. Time Warp on a shared memory multiprocessor;Fujimoto R. M.;Transactions of the Society for Computer Simulation,1989

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adiabatic quantum linear regression;Scientific Reports;2021-11-09

2. High-Performance PDES on Manycore Clusters;Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation;2021-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3