Optimizing memory bandwidth use and performance for matrix-vector multiplication in iterative methods

Author:

Boland David1,Constantinides George A.1

Affiliation:

1. Imperial College London, UK

Abstract

Computing the solution to a system of linear equations is a fundamental problem in scientific computing, and its acceleration has drawn wide interest in the FPGA community [Morris et al. 2006; Zhang et al. 2008; Zhuo and Prasanna 2006]. One class of algorithms to solve these systems, iterative methods, has drawn particular interest, with recent literature showing large performance improvements over General-Purpose Processors (GPPs) [Lopes and Constantinides 2008]. In several iterative methods, this performance gain is largely a result of parallelization of the matrix-vector multiplication, an operation that occurs in many applications and hence has also been widely studied on FPGAs [Zhuo and Prasanna 2005; El-Kurdi et al. 2006]. However, whilst the performance of matrix-vector multiplication on FPGAs is generally I/O bound [Zhuo and Prasanna 2005], the nature of iterative methods allows the use of on-chip memory buffers to increase the bandwidth, providing the potential for significantly more parallelism [deLorimier and DeHon 2005]. Unfortunately, existing approaches have generally only either been capable of solving large matrices with limited improvement over GPPs [Zhuo and Prasanna 2005; El-Kurdi et al. 2006; deLorimier and DeHon 2005], or achieve high performance for relatively small matrices [Lopes and Constantinides 2008; Boland and Constantinides 2008]. This article proposes hardware designs to take advantage of symmetrical and banded matrix structure, as well as methods to optimize the RAM use, in order to both increase the performance and retain this performance for larger-order matrices.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3