A Survey of Knowledge Enhanced Pre-trained Language Models

Author:

Yang Jian1,Hu Xinyu2,Xiao Gang2,Shen Yulong1

Affiliation:

1. Computer Science and Technology, Xidian University, Xi’an, China

2. National Key Laboratory for Complex Systems Simulation, Beijing, China

Abstract

Pre-trained language models learn informative word representations on a large-scale text corpus through self-supervised learning, which has achieved promising performance in fields of natural language processing (NLP) after fine-tuning. These models, however, suffer from poor robustness and lack of interpretability. We refer to pre-trained language models with knowledge injection as knowledge-enhanced pre-trained language models (KEPLMs). These models demonstrate deep understanding and logical reasoning and introduce interpretability. In this survey, we provide a comprehensive overview of KEPLMs in NLP. We first discuss the advancements in pre-trained language models and knowledge representation learning. Then we systematically categorize existing KEPLMs from three different perspectives. Finally, we outline some potential directions of KEPLMs for future research.

Publisher

Association for Computing Machinery (ACM)

Reference120 articles.

1. Saeed Amizadeh, Hamid Palangi, Alex Polozov, Yichen Huang, and Kazuhito Koishida. 2020. Neuro-Symbolic Visual Reasoning: Disentangling. In International Conference on Machine Learning. PMLR, 279–290.

2. Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang, Jing Bai, Jing Yu, and Yunhai Tong. 2021. Syntax-BERT: Improving Pre-trained Transformers with Syntax Trees. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. 3011–3020.

3. Yoshua Bengio. 2009. Learning deep architectures for AI. Now Publishers Inc.

4. Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence 35, 8(2013), 1798–1828.

5. Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A neural probabilistic language model. The journal of machine learning research 3 (2003), 1137–1155.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3