Salient-Centeredness and Saliency Size in Computational Aesthetics

Author:

Hoh Weng Khuan1ORCID,Zhang Fang-Lue1ORCID,Dodgson Neil A.1ORCID

Affiliation:

1. Victoria University of Wellington, Wellington, New Zealand

Abstract

We investigate the optimal aesthetic location and size of a single dominant salient region in a photographic image. Existing algorithms for photographic composition do not take full account of the spatial positioning or sizes of these salient regions. We present a set of experiments to assess aesthetic preferences, inspired by theories of centeredness, principal lines, and Rule-of-Thirds. Our experimental results show a clear preference for the salient region to be centered in the image and that there is a preferred size of non-salient border around this salient region. We thus propose a novel image cropping mechanism for images containing a single salient region to achieve the best aesthetic balance. Our results show that the Rule-of-Thirds guideline is not generally valid but also allow us to hypothesize in which situations it is useful and in which it is inappropriate.

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Reference100 articles.

1. Sharon Alpert, Meirav Galun, Ronen Basri, and Achi Brandt. 2007. Image segmentation by probabilistic bottom-up aggregation and cue integration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1–8.

2. Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes;Anderson Theodore W.;The Annals of Mathematical Statistics,1952

3. R. Arnheim. 1965. Art and Visual Perception: A Psychology of the Creative Eye. University of California Press. 54006467 Retrieved from https://books.google.co.nz/books?id=68hz5phbLMwC.

4. Automated Aesthetic Analysis of Photographic Images

5. C. Aytekin, S. Kiranyaz, and M. Gabbouj. 2014. Automatic object segmentation by quantum cuts. In Proceedings of theInternational Conference on Pattern Recognition. 112–117. DOI:10.1109/ICPR.2014.29

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3