What Are Links in Linked Open Data? A Characterization and Evaluation of Links between Knowledge Graphs on the Web

Author:

Haller Armin1ORCID,Fernández Javier D.2,Kamdar Maulik R.3,Polleres Axel4ORCID

Affiliation:

1. Australian National University, Canberra, Australia

2. Complexity Science Hub Vienna, Josefstädter Strasse, Vienna, Austria

3. Stanford University, Stanford, CA, USA

4. Vienna University of Economics and Business, Welthandelsplatz, Vienna, Austria

Abstract

Linked Open Data promises to provide guiding principles to publish interlinked knowledge graphs on the Web in the form of findable, accessible, interoperable, and reusable datasets. We argue that while as such, Linked Data may be viewed as a basis for instantiating the FAIR principles, there are still a number of open issues that cause significant data quality issues even when knowledge graphs are published as Linked Data. First, to define boundaries of single coherent knowledge graphs within Linked Data, a principled notion of what a dataset is, or, respectively, what links within and between datasets are, has been missing. Second, we argue that to enable FAIR knowledge graphs, Linked Data misses standardised findability and accessability mechanism via a single entry link. To address the first issue, we (i) propose a rigorous definition of a naming authority for a Linked Data dataset, (ii) define different link types for data in Linked datasets, (iii) provide an empirical analysis of linkage among the datasets of the Linked Open Data cloud, and (iv) analyse the dereferenceability of those links. We base our analyses and link computations on a scalable mechanism implemented on top of the HDT format, which allows us to analyse quantity and quality of different link types at scale.

Funder

European Union

Österreichische Forschungsförderungsgesellschaft

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems and Management,Information Systems

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SMW Cloud: A Corpus of Domain-Specific Knowledge Graphs from Semantic MediaWikis;Lecture Notes in Computer Science;2024

2. A Structured Analysis of Domain-Specific Linked Open Vocabularies (LOV): Indicators for Interoperability and Reusability;Lecture Notes in Business Information Processing;2024

3. Alleviating Sparsity to Enhance Group Recommendation with Cross-Linked Domain Model;Lecture Notes in Networks and Systems;2024

4. O2WB: A tool enabling ontology reuse in Wikibase;Proceedings of the 12th Knowledge Capture Conference 2023;2023-12-05

5. Linked Open Legal Data Indonesia;2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA);2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3