Shared recovery for energy efficiency and reliability enhancements in real-time applications with precedence constraints

Author:

Zhao Baoxian1,Aydin Hakan1,Zhu Dakai2

Affiliation:

1. George Mason University, Fairfax, VA

2. University of Texas at San Antonio, San Antonio, TX

Abstract

While Dynamic Voltage Scaling (DVS) remains as a popular energy management technique for modern computing systems, recent research has identified significant and negative impacts of voltage scaling on system reliability. To preserve system reliability under DVS settings, a number of reliability-aware power management (RA-PM) schemes have been recently studied. However, the existing RA-PM schemes normally schedule a separate recovery for each task whose execution is scaled down and are rather conservative. To overcome such conservativeness, we study in this article novel RA-PM schemes based on the shared recovery (SHR) technique. Specifically, we consider a set of frame-based real-time tasks with individual deadlines and a common period where the precedence constraints are represented by a directed acyclic graph (DAG). We first show that the earliest deadline first (EDF) algorithm can always yield a schedule where all timing and precedence constraints are met by considering the effective deadlines of tasks derived from as late as possible (ALAP) policy, provided that the task set is feasible. Then, we propose a shared recovery based frequency assignment technique (namely SHR-DAG) and prove its optimality to minimize energy consumption while preserving the system reliability. To exploit additional slack that arises from early completion of tasks, we also study a dynamic extension for SHR-DAG to improve energy efficiency and system reliability at runtime. The results from our extensive simulations show that, compared to the existing RA-PM schemes, SHR-DAG can achieve up to 35% energy savings, which is very close to the maximum achievable energy savings. More interestingly, our extensive evaluation also indicates that the new schemes offer non-trivial improvements on system reliability over the existing RA-PM schemes as well.

Funder

Division of Computer and Network Systems

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3