A Scalable Redefined Stochastic Blockmodel

Author:

Liu Xueyan1,Yang Bo1,Chen Hechang1,Musial Katarzyna2,Chen Hongxu2,Li Yang3,Zuo Wanli1

Affiliation:

1. Jilin University, Changchun, China

2. University of Technology Sydney, NSW, Australia

3. Aviation University of Air Force and Jilin University, Changchun, China

Abstract

Stochastic blockmodel (SBM) is a widely used statistical network representation model, with good interpretability, expressiveness, generalization, and flexibility, which has become prevalent and important in the field of network science over the last years. However, learning an optimal SBM for a given network is an NP-hard problem. This results in significant limitations when it comes to applications of SBMs in large-scale networks, because of the significant computational overhead of existing SBM models, as well as their learning methods. Reducing the cost of SBM learning and making it scalable for handling large-scale networks, while maintaining the good theoretical properties of SBM, remains an unresolved problem. In this work, we address this challenging task from a novel perspective of model redefinition. We propose a novel redefined SBM with Poisson distribution and its block-wise learning algorithm that can efficiently analyse large-scale networks. Extensive validation conducted on both artificial and real-world data shows that our proposed method significantly outperforms the state-of-the-art methods in terms of a reasonable trade-off between accuracy and scalability. 1

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3