Sublinear Random Access Generators for Preferential Attachment Graphs

Author:

Even Guy1,Levi Reut2,Medina Moti3,Rosén Adi4

Affiliation:

1. Tel Aviv University, Israel

2. The Interdisciplinary Center Herzliya (IDC), Herzliya, Israel

3. Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel

4. CNRS and Université de Paris, France

Abstract

We consider the problem of sampling from a distribution on graphs, specifically when the distribution is defined by an evolving graph model, and consider the time, space, and randomness complexities of such samplers. In the standard approach, the whole graph is chosen randomly according to the randomized evolving process, stored in full, and then queries on the sampled graph are answered by simply accessing the stored graph. This may require prohibitive amounts of time, space, and random bits, especially when only a small number of queries are actually issued. Instead, we propose a setting where one generates parts of the sampled graph on-the-fly, in response to queries, and therefore requires amounts of time, space, and random bits that are a function of the actual number of queries. Yet, the responses to the queries correspond to a graph sampled from the distribution in question. Within this framework, we focus on two random graph models: the Barabási-Albert Preferential Attachment model (BA-graphs) ( Science , 286 (5439):509–512) (for the special case of out-degree 1) and the random recursive tree model ( Theory of Probability and Mathematical Statistics , (51):1–28). We give on-the-fly generation algorithms for both models. With probability 1-1/poly( n ), each and every query is answered in polylog( n ) time, and the increase in space and the number of random bits consumed by any single query are both polylog( n ), where n denotes the number of vertices in the graph. Our work thus proposes a new approach for the access to huge graphs sampled from a given distribution, and our results show that, although the BA random graph model is defined by a sequential process, efficient random access to the graph’s nodes is possible. In addition to the conceptual contribution, efficient on-the-fly generation of random graphs can serve as a tool for the efficient simulation of sublinear algorithms over large BA-graphs, and the efficient estimation of their on such graphs.

Funder

Israel Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Mathematics (miscellaneous)

Reference36 articles.

1. Distributed-memory parallel algorithms for generating massive scale-free networks using preferential attachment model. In Proceedings of the International Conference for High Performance Computing;Maksudul Alam Md.;Networking, Storage and Analysis.,2013

2. Efficient generation of large random networks;Batagelj Vladimir;Phys. Rev. E,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Agnostic proper learning of monotone functions: beyond the black-box correction barrier;2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS);2023-11-06

2. Properly learning monotone functions via local correction;2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3