Dynamic social network analysis using latent space models

Author:

Sarkar Purnamrita1,Moore Andrew W.1

Affiliation:

1. Carnegie Mellon University, Pittsburgh, PA

Abstract

This paper explores two aspects of social network modeling. First, we generalize a successful static model of relationships into a dynamic model that accounts for friendships drifting over time. Second, we show how to make it tractable to learn such models from data, even as the number of entities n gets large. The generalized model associates each entity with a point in p -dimensional Euclidean latent space. The points can move as time progresses but large moves in latent space are improbable. Observed links between entities are more likely if the entities are close in latent space. We show how to make such a model tractable (sub-quadratic in the number of entities) by the use of appropriate kernel functions for similarity in latent space; the use of low dimensional KD-trees; a new efficient dynamic adaptation of multidimensional scaling for a first pass of approximate projection of entities into latent space; and an efficient conjugate gradient update rule for non-linear local optimization in which amortized time per entity during an update is O (log n ). We use both synthetic and real-world data on up to 11,000 entities which indicate near-linear scaling in computation time and improved performance over four alternative approaches. We also illustrate the system operating on twelve years of NIPS co-authorship data.

Publisher

Association for Computing Machinery (ACM)

Cited by 182 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3