Affiliation:
1. Birzeit University, West Bank, Palestine
2. American University, Beirut, Lebanon
Abstract
Words in Arabic consist of letters and short vowel symbols called diacritics inscribed atop regular letters. Changing diacritics may change the syntax and semantics of a word; turning it into another. This results in difficulties when comparing words based solely on string matching. Typically, Arabic NLP applications resort to morphological analysis to battle ambiguity originating from this and other challenges. In this article, we introduce three alternative algorithms to compare two words with possibly different diacritics. We propose the
Subsume
knowledge-based algorithm, the
Imply
rule-based algorithm, and the
Alike
machine-learning-based algorithm. We evaluated the soundness, completeness, and accuracy of the algorithms against a large dataset of 86,886 word pairs. Our evaluation shows that the accuracy of Subsume (100%), Imply (99.32%), and Alike (99.53%). Although accurate, Subsume was able to judge only 75% of the data. Both Subsume and Imply are sound, while Alike is not. We demonstrate the utility of the algorithms using a real-life use case -- in lemma disambiguation and in linking hundreds of Arabic dictionaries.
Funder
Lebanese National Council for Scientific Research
Birzeit University
VerbMesh project, funded by BZU research committee
Google's Faculty Research Award
Publisher
Association for Computing Machinery (ACM)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献