3D Scene Geometry Estimation from 360° Imagery: A Survey

Author:

da Silveira Thiago L. T.1,Pinto Paulo G. L.1,Murrugarra-Llerena Jeffri1,Jung Cláudio R.1

Affiliation:

1. Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

Abstract

This article provides a comprehensive survey on pioneer and state-of-the-art 3D scene geometry estimation methodologies based on single, two, or multiple images captured under omnidirectional optics. We first revisit the basic concepts of the spherical camera model and review the most common acquisition technologies and representation formats suitable for omnidirectional (also called 360°, spherical or panoramic) images and videos. We then survey monocular layout and depth inference approaches, highlighting the recent advances in learning-based solutions suited for spherical data. The classical stereo matching is then revised on the spherical domain, where methodologies for detecting and describing sparse and dense features become crucial. The stereo matching concepts are then extrapolated for multiple view camera setups, categorizing them among light fields, multi-view stereo, and structure from motion (or visual simultaneous localization and mapping). We also compile and discuss commonly adopted datasets and figures of merit indicated for each purpose and list recent results for completeness. We conclude this article by pointing out current and future trends.

Funder

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul

Conselho Nacional de Desenvolvimento Científico and Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Reference191 articles.

1. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods

2. Spherepix: A Data Structure for Spherical Image Processing

3. Building Rome in a day

4. Panoramic Stereo Videos with a Single Camera

5. Two-and three-view geometry for spherical cameras;Akihiko T.;Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras,2005

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MVD^2: Efficient Multiview 3D Reconstruction for Multiview Diffusion;Special Interest Group on Computer Graphics and Interactive Techniques Conference Conference Papers '24;2024-07-13

2. 3D reconstruction of spherical images based on incremental structure from motion;International Journal of Remote Sensing;2024-04-02

3. Deep synthesis and exploration of omnidirectional stereoscopic environments from a single surround-view panoramic image;Computers & Graphics;2024-04

4. 3D reconstruction of spherical images: a review of techniques, applications, and prospects;Geo-spatial Information Science;2024-03-08

5. RomniStereo: Recurrent Omnidirectional Stereo Matching;IEEE Robotics and Automation Letters;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3