Generating object lifetime traces with Merlin

Author:

Hertz Matthew1,Blackburn Stephen M.2,Moss J. Eliot B.1,McKinley Kathryn S.3,Stefanović Darko4

Affiliation:

1. University of Massachusetts, Amherst, Amherst, MA

2. Australian National University, Canberra, ACT, Australia

3. University of Texas at Austin, Austin, TX

4. University of New Mexico, Albuquerque, NM

Abstract

Programmers are writing a rapidly growing number of programs in object-oriented languages, such as Java and C#, that require garbage collection. Garbage collection traces and simulation speed up research by enabling deeper understandings of object lifetime behavior and quick exploration and design of new garbage collection algorithms. When generating perfect traces, the brute-force method of computing object lifetimes requires a whole-heap garbage collection at every potential collection point in the program. Because this process is prohibitively expensive, researchers often use granulated traces by collecting only periodically, for example, every 32 KB of allocation.We extend the state of the art for simulating garbage collection algorithms in two ways. First, we develop a systematic methodology for simulation studies of copying garbage collection and present results showing the effects of trace granularity on these simulations. We show that trace granularity often distorts simulated garbage collection results compared with perfect traces. Second, we present and measure the performance of a new algorithm called Merlin for computing object lifetimes. Merlin timestamps objects and later uses the timestamps of dead objects to reconstruct when they died. The Merlin algorithm piggybacks on garbage collections performed by the base system. Experimental results show that Merlin can generate traces over two orders of magnitude faster than the brute-force method which collects after every object allocation. We also use Merlin to produce visualizations of heap behavior that expose new object lifetime behaviors.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating Finalization-Based Object Lifetime Profiling;Proceedings of the 2024 ACM SIGPLAN International Symposium on Memory Management;2024-06-20

2. OJXPerf;Proceedings of the 44th International Conference on Software Engineering;2022-05-21

3. Multilevel analysis of the java virtual machine based on kernel and userspace traces;Journal of Systems and Software;2020-09

4. Evaluating an Interactive Memory Analysis Tool: Findings from a Cognitive Walkthrough and a User Study;Proceedings of the ACM on Human-Computer Interaction;2020-06-18

5. Optimal Choice of When to Garbage Collect;ACM Transactions on Programming Languages and Systems;2019-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3