Exploiting synchronous and asynchronous DVS for feedback EDF scheduling on an embedded platform

Author:

Zhu Yifan1,Mueller Frank1

Affiliation:

1. North Carolina State University, Raleigh, North Carolina

Abstract

Contemporary processors support dynamic voltage scaling (DVS) to reduce power consumption by varying processor voltage/frequency dynamically. We develop power-aware feedback--DVS algorithms for hard real-time systems that adapt to dynamically changing workloads. The algorithms lower execution speed while guaranteeing timing constraints. We study energy consumption for synchronous and asynchronous DVS switching on a PowerPC board. Energy, measured via data acquisition, is reduced up to 70% over naïve DVS for our feedback scheme with 24% peak savings over previous algorithms. These results, albeit differing in quantity, confirm trends observed under simulation. They are the first of their kind on an embedded board.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic partitioned scheduling of real-time tasks on ARM big.LITTLE architectures;Journal of Systems and Software;2021-03

2. Energy-efficient low-latency audio on android;Journal of Systems and Software;2019-06

3. Real-time and energy efficiency in Linux;ACM SIGAPP Applied Computing Review;2019-01-15

4. Energy consumption reduction for asynchronous message-passing applications;The Journal of Supercomputing;2016-11-26

5. Real-Time Dynamic Voltage Scaling for the EPOS Operating System;2012 Brazilian Symposium on Computing System Engineering;2012-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3