Interval Enclosures of Upper Bounds of Roundoff Errors Using Semidefinite Programming

Author:

Magron Victor1ORCID

Affiliation:

1. CNRS Verimag, Paris Cedex, France

Abstract

A long-standing problem related to floating-point implementation of numerical programs is to provide efficient yet precise analysis of output errors. We present a framework to compute lower bounds on largest absolute roundoff errors, for a particular rounding model. This method applies to numerical programs implementing polynomial functions with box constrained input variables. Our study is based on three different hierarchies, relying respectively on generalized eigenvalue problems, elementary computations, and semidefinite programming (SDP) relaxations. This is complementary of over-approximation frameworks, consisting of obtaining upper bounds on the largest absolute roundoff error. Combining the results of both frameworks allows one to get enclosures for upper bounds on roundoff errors. The under-approximation framework provided by the third hierarchy is based on a new sequence of convergent robust SDP approximations for certain classes of polynomial optimization problems. Each problem in this hierarchy can be solved exactly via SDP. By using this hierarchy, one can provide a monotone nondecreasing sequence of lower bounds converging to the absolute roundoff error of a program implementing a polynomial function, applying for a particular rounding model. We investigate the efficiency and precision of our method on nontrivial polynomial programs coming from space control, optimization, and computational biology.

Funder

LabEx PERSYVAL-Lab

French program “Investissement d’avenir”

European Research Council (ERC) “STATOR”

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference39 articles.

1. Symbolic Execution with Interval Solving and Meta-heuristic Search

2. Efficient search for inputs causing high floating-point errors

3. Coq 1984--2018. The Coq Proof Assistant. http://coq.inria.fr/. Coq 1984--2018. The Coq Proof Assistant. http://coq.inria.fr/.

4. Sound compilation of reals

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CS-TSSOS: Correlative and Term Sparsity for Large-Scale Polynomial Optimization;ACM Transactions on Mathematical Software;2022-12-19

2. Precision Analysis for an Optimal Parallel IIR Filter’s Implementation;Circuits, Systems, and Signal Processing;2022-03-26

3. Exploiting Sparsity in Complex Polynomial Optimization;Journal of Optimization Theory and Applications;2021-11-26

4. A sublevel moment-SOS hierarchy for polynomial optimization;Computational Optimization and Applications;2021-11-19

5. Exploiting term sparsity in noncommutative polynomial optimization;Computational Optimization and Applications;2021-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3