Affiliation:
1. Tsinghua University, Beijing, China
2. California Institute of Technology, Pasadena, CA, USA
Abstract
We study online optimization in a setting where an online learner seeks to optimize a per-round hitting cost, which may be non-convex, while incurring a movement cost when changing actions between rounds. We ask:under what general conditions is it possible for an online learner to leverage predictions of future cost functions in order to achieve near-optimal costs? Prior work has provided near-optimal online algorithms for specific combinations of assumptions about hitting and switching costs, but no general results are known. In this work, we give two general sufficient conditions that specify a relationship between the hitting and movement costs which guarantees that a new algorithm, Synchronized Fixed Horizon Control (SFHC), achieves a 1+O(1/w) competitive ratio, where w is the number of predictions available to the learner. Our conditions do not require the cost functions to be convex, and we also derive competitive ratio results for non-convex hitting and movement costs. Our results provide the first constant, dimension-free competitive ratio for online non-convex optimization with movement costs. We also give an example of a natural problem, Convex Body Chasing (CBC), where the sufficient conditions are not satisfied and prove that no online algorithm can have a competitive ratio that converges to 1.
Funder
Division of Computing and Communication Foundations
Division of Computer and Network Systems
Amazon Web Services
Publisher
Association for Computing Machinery (ACM)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献