Online Optimization with Predictions and Non-convex Losses

Author:

Lin Yiheng1,Goel Gautam2,Wierman Adam2

Affiliation:

1. Tsinghua University, Beijing, China

2. California Institute of Technology, Pasadena, CA, USA

Abstract

We study online optimization in a setting where an online learner seeks to optimize a per-round hitting cost, which may be non-convex, while incurring a movement cost when changing actions between rounds. We ask:under what general conditions is it possible for an online learner to leverage predictions of future cost functions in order to achieve near-optimal costs? Prior work has provided near-optimal online algorithms for specific combinations of assumptions about hitting and switching costs, but no general results are known. In this work, we give two general sufficient conditions that specify a relationship between the hitting and movement costs which guarantees that a new algorithm, Synchronized Fixed Horizon Control (SFHC), achieves a 1+O(1/w) competitive ratio, where w is the number of predictions available to the learner. Our conditions do not require the cost functions to be convex, and we also derive competitive ratio results for non-convex hitting and movement costs. Our results provide the first constant, dimension-free competitive ratio for online non-convex optimization with movement costs. We also give an example of a natural problem, Convex Body Chasing (CBC), where the sufficient conditions are not satisfied and prove that no online algorithm can have a competitive ratio that converges to 1.

Funder

Division of Computing and Communication Foundations

Division of Computer and Network Systems

Amazon Web Services

Publisher

Association for Computing Machinery (ACM)

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization algorithms as robust feedback controllers;Annual Reviews in Control;2024

2. Adversarial Online Reinforcement Learning Under Limited Defender Resources;Advances in Information Security;2024

3. Algorithms for Right-sizing Heterogeneous Data Centers;ACM Transactions on Parallel Computing;2023-12-14

4. Lazy Lagrangians for Optimistic Learning With Budget Constraints;IEEE/ACM Transactions on Networking;2023-10

5. Adaptive Composite Online Optimization: Predictions in Static and Dynamic Environments;IEEE Transactions on Automatic Control;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3