Robust Vision-Based Cheat Detection in Competitive Gaming

Author:

Jonnalagadda Aditya1,Frosio Iuri2,Schneider Seth2,McGuire Morgan2,Kim Joohwan2

Affiliation:

1. University of California, Santa Barbara, Santa Barbara, California, USA

2. NVIDIA, Santa Clara, California, USA

Abstract

Game publishers and anti-cheat companies have been unsuccessful in blocking cheating in online gaming. We propose a novel, vision-based approach that captures the frame buffer's final state and detects illicit overlays. To this aim, we train and evaluate a DNN detector on a new dataset, collected using two first-person shooter games and three cheating software. We study the advantages and disadvantages of different DNN architectures operating on a local or global scale. We use output confidence analysis to avoid unreliable detections and inform when network retraining is required. In an ablation study, we show how to use Interval Bound Propagation (IBP) to build a detector that is also resistant to potential adversarial attacks and study IBP's interaction with confidence analysis. Our results show that robust and effective anti-cheating through machine learning is practically feasible and can be used to guarantee fair play in online gaming.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference36 articles.

1. Aimware. 2014. aimware. https://aimware.net/ Aimware. 2014. aimware. https://aimware.net/

2. H. Alayed Fotos Frangoudes and Clifford Neuman. 2013. Behavioral-based cheating detection in online first person shooters using machine learning techniques. 1--8. https://doi.org/10.1109/CIG.2013.6633617 H. Alayed Fotos Frangoudes and Clifford Neuman. 2013. Behavioral-based cheating detection in online first person shooters using machine learning techniques. 1--8. https://doi.org/10.1109/CIG.2013.6633617

3. Nicholas Carlini Anish Athalye Nicolas Papernot Wieland Brendel Jonas Rauber Dimitris Tsipras Ian Goodfellow Aleksander Madry and Alexey Kurakin. 2019. On Evaluating Adversarial Robustness. arXiv:1902.06705 [cs.LG] Nicholas Carlini Anish Athalye Nicolas Papernot Wieland Brendel Jonas Rauber Dimitris Tsipras Ian Goodfellow Aleksander Madry and Alexey Kurakin. 2019. On Evaluating Adversarial Robustness. arXiv:1902.06705 [cs.LG]

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automated evaluation of game content display using deep learning;Proceedings of the 28th International Conference on Evaluation and Assessment in Software Engineering;2024-06-18

2. Redefining Boundaries in the Metaverse: Navigating the Challenges of Virtual Harm and User Safety;Laws;2024-05-24

3. Is Resistance Futile?: Early Career Game Developers, Generative AI, and Ethical Skepticism;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

4. VADNet: Visual-Based Anti-Cheating Detection Network in FPS Games;Traitement du Signal;2024-02-29

5. SC2EGSet: StarCraft II Esport Replay and Game-state Dataset;Scientific Data;2023-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3