Locality-aware request distribution in cluster-based network servers

Author:

Pai Vivek S.1,Aron Mohit2,Banga Gaurov2,Svendsen Michael2,Druschel Peter2,Zwaenepoel Willy2,Nahum Erich3

Affiliation:

1. Department of Electrical and Computer Engineering, Rice University

2. Department of Computer Science, Rice University

3. IBM T.J. Watson Research Center

Abstract

We consider cluster-based network servers in which a front-end directs incoming requests to one of a number of back-ends. Specifically, we consider content-based request distribution: the front-end uses the content requested, in addition to information about the load on the back-end nodes, to choose which back-end will handle this request. Content-based request distribution can improve locality in the back-ends' main memory caches, increase secondary storage scalability by partitioning the server's database, and provide the ability to employ back-end nodes that are specialized for certain types of requests.As a specific policy for content-based request distribution, we introduce a simple, practical strategy for locality-aware request distribution (LARD). With LARD, the front-end distributes incoming requests in a manner that achieves high locality in the back-ends' main memory caches as well as load balancing. Locality is increased by dynamically subdividing the server's working set over the back-ends. Trace-based simulation results and measurements on a prototype implementation demonstrate substantial performance improvements over state-of-the-art approaches that use only load information to distribute requests. On workloads with working sets that do not fit in a single server node's main memory cache, the achieved throughput exceeds that of the state-of-the-art approach by a factor of two to four.With content-based distribution, incoming requests must be handed off to a back-end in a manner transparent to the client, after the front-end has inspected the content of the request. To this end, we introduce an efficient TCP handoflprotocol that can hand off an established TCP connection in a client-transparent manner.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference25 articles.

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3