Tackling the Accuracy-Interpretability Trade-off: Interpretable Deep Learning Models for Satellite Image-based Real Estate Appraisal

Author:

Kucklick Jan-Peter1ORCID,Müller Oliver1ORCID

Affiliation:

1. Paderborn University (UPB), Paderborn, Germany

Abstract

Deep learning models fuel many modern decision support systems, because they typically provide high predictive performance. Among other domains, deep learning is used in real-estate appraisal, where it allows extending the analysis from hard facts only (e.g., size, age) to also consider more implicit information about the location or appearance of houses in the form of image data. However, one downside of deep learning models is their intransparent mechanic of decision making, which leads to a trade-off between accuracy and interpretability. This limits their applicability for tasks where a justification of the decision is necessary. Therefore, in this article, we first combine different perspectives on interpretability into a multi-dimensional framework for a socio-technical perspective on explainable artificial intelligence. Second, we measure the performance gains of using multi-view deep learning, which leverages additional image data (satellite images) for real estate appraisal. Third, we propose and test a novel post hoc explainability method called Grad-Ram. This modified version of Grad-Cam mitigates the intransparency of convolutional neural networks for predicting continuous outcome variables. With this, we try to reduce the accuracy-interpretability trade-off of multi-view deep learning models. Our proposed network architecture outperforms traditional hedonic regression models by 34% in terms of MAE. Furthermore, we find that the used satellite images are the second most important predictor after square feet in our model and that the network learns interpretable patterns about the neighborhood structure and density.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Management Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the evaluation of deep learning interpretability methods for medical images under the scope of faithfulness;Computer Methods and Programs in Biomedicine;2024-08

2. Surveying neuro-symbolic approaches for reliable artificial intelligence of things;Journal of Reliable Intelligent Environments;2024-07-26

3. Enhancing tourism demand forecasting with a transformer-based framework;Annals of Tourism Research;2024-07

4. Identifying the Current Status of Real Estate Appraisal Methods;Real Estate Management and Valuation;2024-06-07

5. A Data-Driven Approach to Predicting Melbourne Housing Prices Using Advanced Machine Learning Models;2023 International Conference on Sustainable Technology and Engineering (i-COSTE);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3