Device Hopping

Author:

Metzger Paul1ORCID,Seeker Volker1,Fensch Christian1,Cole Murray1

Affiliation:

1. School of Informatics, University of Edinburgh, Edinburgh, United Kingdom

Abstract

Existing OS techniques for homogeneous many-core systems make it simple for single and multithreaded applications to migrate between cores. Heterogeneous systems do not benefit so fully from this flexibility, and applications that cannot migrate in mid-execution may lose potential performance. The situation is particularly challenging when a switch of language runtime would be desirable in conjunction with a migration. We present a case study in making heterogeneous CPU + GPU systems more flexible in this respect. Our technique for fine-grained application migration, allows switches between OpenMP, OpenCL, and CUDA execution, in conjunction with migrations from GPU to CPU, and CPU to GPU. To achieve this, we subdivide iteration spaces into slices, and consider migration on a slice-by-slice basis. We show that slice sizes can be learned offline by machine learning models. To further improve performance, memory transfers are made migration-aware. The complexity of the migration capability is hidden from programmers behind a high-level programming model. We present a detailed evaluation of our mid-kernel migration mechanism with the First Come, First Served scheduling policy. We compare our technique in a focused evaluation scenario against idealized kernel-by-kernel scheduling, which is typical for current systems, and makes perfect kernel to device scheduling decisions, but cannot migrate kernels mid-execution. Models show that up to 1.33× speedup can be achieved over these systems by adding fine-grained migration. Our experimental results with all nine applicable SHOC and Rodinia benchmarks achieve speedups of up to 1.30× (1.08× on average) over an implementation of a perfect but kernel-migration incapable scheduler when migrated to a faster device. Our mechanism and slice size choices introduce an average slowdown of only 2.44% if kernels never migrate. Lastly, our programming model reduces the code size by at least 88% if compared to manual implementations of migratable kernels.

Funder

EPSRC Centre for Doctoral Training in Pervasive Parallelism

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference53 articles.

1. StarPU: A Unified Platform for Task Scheduling on Heterogeneous Multicore Architectures

2. Supporting Preemptive Task Executions and Memory Copies in GPGPUs

3. OpenMP Architecture Review Board. 2020. OpenMP Application Programming Interface. Version 5.1. OpenMP Architecture Review Board. 2020. OpenMP Application Programming Interface. Version 5.1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3