Real-time FRP

Author:

Wan Zhanyong1,Taha Walid1,Hudak Paul1

Affiliation:

1. Yale Univ., New Haven, CT

Abstract

Functional reactive programming (FRP) is a declarative programming paradigm where the basic notions are continuous, time-varying behaviors and discrete, event-based reactivity. FRP has been used successfully in many reactive programming domains such as animation, robotics, and graphical user interfaces. The success of FRP in these domains encourages us to consider its use in real-time applications, where it is crucial that the cost of running a program be bounded and known before run-time. But previous work on the semantics and implementation of FRP was not explicitly concerned about the issues of cost. In fact, the resource consumption of FRP programs in the current implementation is often hard to predict. As a first step towards addressing these concerns, this paper presents real-time FRP (RT-FRP), a statically-typed language where the time and space cost of each execution step for a given program is statically bounded. To take advantage of existing work on languages with bounded resources, we split RT-FRP into two parts: a reactive part that captures the essential ingredients of FRP programs, and a base language part that can be instantiated to any generic programming language that has been shown to be terminating and resource-bounded. This allows us to focus on the issues specific to RT-FRP, namely, two forms of recursion. After presenting the operational explanation of what can go wrong due to the presence of recursion, we show how the typed version of the language is terminating and resource-bounded. Most of our FRP programs are expressible directly in RT. The rest are expressible via a simple mechanism that integrates RT-FRP with the base language.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Work in Progress: Response Time Analysis of Real-Time Quantum Computing Systems;2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS);2023-05

2. Real-time MLton: A Standard ML runtime for real-time functional programs;Journal of Functional Programming;2021

3. DIVA: A Declarative and Reactive Language for in situ Visualization;2020 IEEE 10th Symposium on Large Data Analysis and Visualization (LDAV);2020-10

4. RTMLton: An SML Runtime for Real-Time Systems;Practical Aspects of Declarative Languages;2020

5. A lightweight push-pull mechanism for implicitly using signals in imperative programming;Journal of Computer Languages;2019-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3