Automatic generation of staged geometric predicates

Author:

Nanevski Aleksandar1,Blelloch Guy1,Harper Robert1

Affiliation:

1. Carnegie Mellon Univ., Pittsburgh, PA

Abstract

Algorithms in Computational Geometry and Computer Aided Design are often developed for the Real RAM model of computation, which assumes exactness of all the input arguments and operations. In practice, however, the exactness imposes tremendous limitations on the algorithms --- even the basic operations become uncomputable, or prohibitively slow. When the computations of interest are limited to determining the sign of polynomial expressions over floating point numbers, faster approaches are available. One can evaluate the polynomial in floating-point first, together with some estimate of the rounding error, and fall back to exact arithmetic only if this error is too big to determine the sign reliably. A particularly efficient variation on this approach has been used by Shewchuk in his robust implementations of Orient and InSphere geometric predicates. We extend Shewchuk's method to arbitrary polynomial expressions. The expressions are given as programs in a suitable source language featuring basic arithmetic operations of addition, subtraction, multiplication and squaring, which are to be perceived by the programmer as exact. The source language also allows for anonymous functions, and thus enables the common functional programming technique of staging. The method is presented formally through several judgments that govern the compilation of the source expression into target code, which is then easily transformed into SML or, in case of single-stage expressions, into C.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference9 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthesis of Rigorous Floating-Point Predicates;Model Checking Software;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3