Functional array fusion

Author:

Chakravarty Manuel M. T.1,Keller Gabriele1

Affiliation:

1. Univ. of New South Wales, Sydney, Australia

Abstract

This paper introduces a new approach to optimizing array algorithms in functional languages. We are specifically aiming at an efficient implementation of irregular array algorithms that are hard to implement in conventional array languages such as Fortran. We optimize the storage layout of arrays containing complex data structures and reduce the running time of functions operating on these arrays by means of equational program transformations. In particular, this paper discusses a novel form of combinator loop fusion, which by removing intermediate structures optimizes the use of the memory hierarchy. We identify a combinator named loop P that provides a general scheme for iterating over an array and that in conjunction with an array constructor replicate P is sufficient to express a wide range of array algorithms. On this basis, we define equational transformation rules that combine traversals of loop P and replicate P as well as sequences of applications of loop P into a single loop P traversal. Our approach naturally generalizes to a parallel implementation and includes facilities for optimizing load balancing and communication. A prototype implementation based on the rewrite rule pragma of the Glasgow Haskell Compiler is significantly faster than standard Haskell arrays and approaches the speed of hand coded C for simple examples.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards scalable pattern-based optimization for dense linear algebra;Concurrency and Computation: Practice and Experience;2018-09-06

2. Triolet;ACM SIGPLAN Notices;2014-11-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3